TY - JOUR
T1 - Transient behavior of a cantilever plate subjected to impact loading
T2 - Theoretical analysis and experimental measurement
AU - Liao, Chan Yi
AU - Ma, Chien Ching
N1 - Publisher Copyright:
© 2019
PY - 2020/1/15
Y1 - 2020/1/15
N2 - This study employed theoretical analysis and experimental measurements in an exploration of the transient behavior of a cantilever plate subjected to a dynamic impact force. The solution of transient displacement is established as a product of the time function and mode shapes for the cantilever plate. The superposition method was used to obtain the mode shapes and resonant frequencies for free vibrations, and the orthogonality of the mode shapes was used to determine the time function. We demonstrate that the results of transient behaviors including transient displacement, strain, velocity and acceleration of the cantilever plate can be explicitly presented in closed forms. In the experiment, the dynamic external force was produced by the impact of a steel ball on the cantilever plate, and a pair of Polyvinylidene fluoride (PVDF) sensors are used to measure the force history of the impact loading. Fotonic sensor (FS) was also used to obtain the time signals of transient displacement, and PVDF film sensors were used to determine transient strain in the cantilever plate. Our results obtained in the theoretical analysis are highly consistent with experimental measurement and FEM simulations in the time domain. This is a clear demonstration of the effectiveness of pairing theoretical analysis with impact loading histories measured using PVDF sensors in the representation of transient wave propagation behavior in a cantilever plate. Based on the proposed theoretical solution, we established the relationship between transient behaviors and vibrational characteristics that allow us to get more information of the physical phenomenon of the transient response. In transient signal, the contribution of each mode is related to the position of impact point and observation point. The position of exciting force and observation near the nodal lines of particular mode shapes can reduce the contribution of those modes in the transient waveform. We also investigated the influence on the transient response of a cantilever plate subjected to various impact loading duration, and indicate that the amplitude of transient displacement after the release of external force is depended on the impact force duration. Setting the force released at the time of period for specific mode, which provide the maximum contribution, can suppress the amplitude of oscillation in subsequent transient displacement.
AB - This study employed theoretical analysis and experimental measurements in an exploration of the transient behavior of a cantilever plate subjected to a dynamic impact force. The solution of transient displacement is established as a product of the time function and mode shapes for the cantilever plate. The superposition method was used to obtain the mode shapes and resonant frequencies for free vibrations, and the orthogonality of the mode shapes was used to determine the time function. We demonstrate that the results of transient behaviors including transient displacement, strain, velocity and acceleration of the cantilever plate can be explicitly presented in closed forms. In the experiment, the dynamic external force was produced by the impact of a steel ball on the cantilever plate, and a pair of Polyvinylidene fluoride (PVDF) sensors are used to measure the force history of the impact loading. Fotonic sensor (FS) was also used to obtain the time signals of transient displacement, and PVDF film sensors were used to determine transient strain in the cantilever plate. Our results obtained in the theoretical analysis are highly consistent with experimental measurement and FEM simulations in the time domain. This is a clear demonstration of the effectiveness of pairing theoretical analysis with impact loading histories measured using PVDF sensors in the representation of transient wave propagation behavior in a cantilever plate. Based on the proposed theoretical solution, we established the relationship between transient behaviors and vibrational characteristics that allow us to get more information of the physical phenomenon of the transient response. In transient signal, the contribution of each mode is related to the position of impact point and observation point. The position of exciting force and observation near the nodal lines of particular mode shapes can reduce the contribution of those modes in the transient waveform. We also investigated the influence on the transient response of a cantilever plate subjected to various impact loading duration, and indicate that the amplitude of transient displacement after the release of external force is depended on the impact force duration. Setting the force released at the time of period for specific mode, which provide the maximum contribution, can suppress the amplitude of oscillation in subsequent transient displacement.
KW - Cantilever plate
KW - Impact loading
KW - Mode shape
KW - Resonant frequency
KW - Transient analysis
KW - Vibration characteristics
UR - http://www.scopus.com/inward/record.url?scp=85073523944&partnerID=8YFLogxK
U2 - 10.1016/j.ijmecsci.2019.105217
DO - 10.1016/j.ijmecsci.2019.105217
M3 - 期刊論文
AN - SCOPUS:85073523944
SN - 0020-7403
VL - 166
JO - International Journal of Mechanical Sciences
JF - International Journal of Mechanical Sciences
M1 - 105217
ER -