Training artificial neural networks with the aid of fuzzy sets

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

This article presents a technique of training artificial neural networks (ANNs) with the aid of fuzzy sets theory. The proposed ANN model is trained with field observation data for predicting the collapse potential of soils. This ANN model uses seven soil parameters as input variables. The output variable is the collapsibility (whether the soil is collapsible) or the collapse potential (if the soil is judged collapsible). The proposed technique involves a module for preprocessing input soil parameters and a module for postprocessing network output. The preprocessing module screens the input data through a group of predefined fuzzy sets, and the postprocessing module, on the other hand, "defuzzifies" the output from the network into a "nonfuzzy " collapse potential, a single value. The ANN with the proposed preprocessing and post-process techniques is shown to be superior to the conventional ANN model in the present study.

Original languageEnglish
Pages (from-to)407-415
Number of pages9
JournalComputer-Aided Civil and Infrastructure Engineering
Volume14
Issue number6
DOIs
StatePublished - 1999

Fingerprint

Dive into the research topics of 'Training artificial neural networks with the aid of fuzzy sets'. Together they form a unique fingerprint.

Cite this