Topographic rainfall of tropical cyclones past a mountain range as categorized by idealized simulations

Ching Yuang Huang, Cher Wei Chou, Shu Hua Chen, Jia Hong Xie

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


Topographic rainfall induced by westbound tropical cyclones past an island mountain is investigated using an idealized Weather Research and Forecasting (WRF) Model. Idealized simulations with varying vortex core size R (100–250 km), vortex intensity Vmax (20–35 m s21), and steering wind speed U (4–10 m s21) are conducted. The results show that the geometric distributions of major rainfall over the island are not greatly sensitive to cloud microphysics schemes using either single momentum or double momentum. Major rainfall is produced over northeastern and southwestern slopes of the mountain for smaller U. AsU is doubled, the rainfall, however, is considerably weakened or is present only over southwestern slopes. For smaller U, a bifurcation of island rainfall with a sudden change in intensity or geometric shifting exists within a tiny range of R or Vmax. When the bifurcation occurs with small track deviations, geometric distributions of major rainfall are also more sensitive to cloud microphysics schemes. Such formation of bifurcation or double-peak rainfall, however, is significantly reduced when the terrain size is doubled. Systematic experiments are conducted to relate the topographical rainfalls over the northern half, southern half, and the whole of the mountain slopes to varying R, Vmax, and U. Larger U tends to produce much larger southern rainfall than northern rainfall. The average and maximum rainfalls generally increase with increased Vmax, except for large R. The decrease of average rainfall and maximum rainfall with increased U is more evident for smaller R, while not necessarily true for larger R.

Original languageEnglish
Pages (from-to)25-49
Number of pages25
JournalWeather and Forecasting
Issue number1
StatePublished - 2020


Dive into the research topics of 'Topographic rainfall of tropical cyclones past a mountain range as categorized by idealized simulations'. Together they form a unique fingerprint.

Cite this