Three-beam setup for coherently controlling nuclear-state population

Wen Te Liao, Adriana Pálffy, Christoph H. Keitel

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

The controlled transfer of nuclear state population using two x-ray laser pulses is investigated theoretically. The laser pulses drive two nuclear transitions in a nuclear three-level system facilitating coherent population transfer via the quantum optics technique of stimulated Raman adiabatic passage. To overcome present limitations of the x-ray laser frequency, we envisage accelerated nuclei interacting with two copropagating or crossed x-ray laser pulses in a three-beam setup. We present a systematic study of this setup providing both pulse temporal sequence and laser pulse intensity for optimized control of the nuclear state population. The tolerance for geometrical parameters such as laser beam divergence of the three-beam setup as well as for the velocity spread of the nuclear beam are studied and a two-photon resonance condition to account for experimental uncertainties is deduced. This additional condition gives a less strict requirement for the experimental implementation of the three-beam setup. Present experimental state of the art and future prospects are discussed.

Original languageEnglish
Article number054609
JournalPhysical Review C - Nuclear Physics
Volume87
Issue number5
DOIs
StatePublished - 14 May 2013

Fingerprint

Dive into the research topics of 'Three-beam setup for coherently controlling nuclear-state population'. Together they form a unique fingerprint.

Cite this