Thiophene-Fused Butterfly-Shaped Polycyclic Arenes with a Diphenanthro[9,10- b:9′,10′- d]thiophene Core for Highly Efficient and Stable Perovskite Solar Cells

Samala Venkateswarlu, Yan Duo Lin, Kun Mu Lee, Kang Ling Liau, Yu Tai Tao

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Two polycyclic heteroarene derivatives, namely, V-1 and V-2, with a diphenanthro[9,10-b:9′,10′-d]thiophene (DPT) core tethered with two diphenylaminophenyl or diphenylamino groups were first synthesized and used as hole-transporting materials (HTMs) in perovskite solar cell (PSC) fabrication. The novel HTMs exhibit appropriate energy-level alignment with the perovskite so as to ensure efficient hole transfer from the perovskite to HTMs. V-2 with the diphenylamino substituent on DPT exhibited impressive photovoltaic performance with a power conversion efficiency of 19.32%, which was higher than that of V-1 (18.60%) and the benchmark 2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (spiro-OMeTAD) (17.99%), presumably because of a better hole extraction, higher hole mobility, and excellent film-forming ability, which were supported by steady-state photoluminescence (PL), time-resolved PL, the hole mobility experiment, scanning electron microscopy, and atomic force microscopy measurements. Meanwhile, V-2-based PSCs exhibited better long-term durability than that with V-1 and the state-of-the-art spiro-OMeTAD, which is ascribable to the excellent surface morphology and hydrophobicity of the film. This systematic study suggests that DPT-based molecules are good potential candidates as HTMs for achieving high-performance PSCs.

Original languageEnglish
Pages (from-to)50495-50504
Number of pages10
JournalACS Applied Materials and Interfaces
Volume12
Issue number45
DOIs
StatePublished - 11 Nov 2020

Keywords

  • diphenanthro[9,10-b:9′,10′-d]thiophene
  • herringbone packing motif
  • hole-transporting materials
  • perovskite solar cell
  • polycyclic arenes

Fingerprint

Dive into the research topics of 'Thiophene-Fused Butterfly-Shaped Polycyclic Arenes with a Diphenanthro[9,10- b:9′,10′- d]thiophene Core for Highly Efficient and Stable Perovskite Solar Cells'. Together they form a unique fingerprint.

Cite this