Thermospheric nitric oxide response to shock-led storms

D. J. Knipp, D. V. Pette, L. M. Kilcommons, T. L. Isaacs, A. A. Cruz, M. G. Mlynczak, L. A. Hunt, C. Y. Lin

Research output: Contribution to journalArticlepeer-review

51 Scopus citations


We present a multiyear superposed epoch study of the Sounding of the Atmosphere using Broadband Emission Radiometry nitric oxide (NO) emission data. NO is a trace constituent in the thermosphere that acts as cooling agent via infrared (IR) emissions. The NO cooling competes with storm time thermospheric heating, resulting in a thermostat effect. Our study of nearly 200 events reveals that shock-led interplanetary coronal mass ejections (ICMEs) are prone to early and excessive thermospheric NO production and IR emissions. Excess NO emissions can arrest thermospheric expansion by cooling the thermosphere during intense storms. The strongest events curtail the interval of neutral density increase and produce a phenomenon known as thermospheric “overcooling.” We use Defense Meteorological Satellite Program particle precipitation data to show that interplanetary shocks and their ICME drivers can more than double the fluxes of precipitating particles that are known to trigger the production of thermospheric NO. Coincident increases in Joule heating likely amplify the effect. In turn, NO emissions are more than double. We discuss the roles and features of shock/sheath structures that allow the thermosphere to temper the effects of extreme storm time energy input and explore the implication these structures may have on mesospheric NO. Shock-driven thermospheric NO IR cooling likely plays an important role in satellite drag forecasting challenges during extreme events.

Original languageEnglish
Pages (from-to)325-342
Number of pages18
JournalSpace Weather
Issue number2
StatePublished - 1 Feb 2017


  • coronal mass ejections
  • infrared emissions
  • interplanetary shocks
  • magnetic clouds
  • nitric oxide
  • thermospheric cooling


Dive into the research topics of 'Thermospheric nitric oxide response to shock-led storms'. Together they form a unique fingerprint.

Cite this