The roles of Arabidopsis HSFA2, HSFA4a, and HSFA7a in the heat shock response and cytosolic protein response

Kuan Fu Lin, Meng Yu Tsai, Chung An Lu, Shaw Jye Wu, Ching Hui Yeh

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Previously, we found that Arabidopsis plants transformed with a construct containing the promoter of Oshsp17.3 from rice fused to the β-glucuronidase gene (GUS), Oshsp17.3Pro::GUS (Oshsp17.3p), showed a GUS signal after heat shock (HS) or azetidine-2-carboxylic acid (AZC) treatment. HS and AZC trigger the heat shock response (HSR) and cytosolic protein response (CPR), respectively, in the cytosol by modulating specific heat shock factor (HSF) activity. Here we further identified that AtHSFA2 (At2g26150), AtHSFA7a (At3g51910), AtHSFB2a (At5g62020), and AtHSFB2b (At4g11660) are HS- and AZC-inducible; AtHSFA4a (At4g18880) is AZC-inducible; and AtHSFA5 (At4g13980) is less AZC- and HS-inducible. To investigate the roles of these 6 AtHSFs in the HSR or CPR, we crossed two independent Oshsp17.3p transgenic Arabidopsis plants with the AtHSF-knockout mutants athsfa2 (SALK_008978), athsfa4a (GABI_181H12), athsfa5 (SALK_004385), athsfa7a (SALK_080138), athsfb2a (SALK_137766), and athsfb2b (SALK_047291), respectively. As compared with the wild type, loss-of-function mutation of AtHSFA2, AtHSFA4a, and AtHSFA7a decreased HS and AZC responsiveness, so these 3 AtHSFs are essential for the HSR and CPR. In addition, loss-of-function results indicated that AthsfB2b is involved in regulating the HSR in Arabidopsis. Furthermore, analysis of the relative GUS activity of two double knockout mutants, athsfA2/athsfA4a and athsfA2/athsfA7a, revealed that AtHSFA2, AtHSFA4a, and AtHSFA7a function differentially in the HSR and CPR. Transcription profiling in athsf mutants revealed positive or negative transcriptional regulation among the 6 AtHSFs in Arabidopsis plants under HS and AZC conditions. Tunicamycin treatment demonstrated that these 6 AtHSFs are not involved in the unfolded protein response.

Original languageEnglish
Article number15
JournalBotanical Studies
Volume59
Issue number1
DOIs
StatePublished - 1 Dec 2018

Keywords

  • Azetidine-2-carboxylic acid
  • Cytosolic protein response
  • Heat shock factor
  • Heat shock protein
  • Heat shock response
  • Unfolded protein response

Fingerprint

Dive into the research topics of 'The roles of Arabidopsis HSFA2, HSFA4a, and HSFA7a in the heat shock response and cytosolic protein response'. Together they form a unique fingerprint.

Cite this