Abstract
Using a conductive atomic force microscopic setup, a metallic nano-cluster at a tip apex was successfully manufactured by an electrochemical redox process from an anodic aluminum oxide template. The diameter of the metallic nano-clusters ranged from 15 nm to 200 nm. The diameters of the nano-clusters could be well-controlled by adjusting the pore size of the templates. The formation of a variety of metallic nano-clusters at the tip apex was accomplished by preparing the electrolyte solution from different metallic salts. The formation mechanism for the nano-cluster is outlined and discussed. Moreover, we were able to enhance the performance of the nano-cluster tips for fieldsensitive scanning probe microscopy, including electrostatic force microscopy and scanning Kelvin probe microscopy by laser annealing. Our experimental results indicated that for applications in field-sensitive scanning probe microscopy the stray field effect was significantly suppressed by the nano-cluster tip and hence the spatial resolution was improved.
Original language | English |
---|---|
Pages (from-to) | 4459-4464 |
Number of pages | 6 |
Journal | Journal of Nanoscience and Nanotechnology |
Volume | 10 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2010 |
Keywords
- Field-Sensitive
- Nano-Cluster
- SPM