The magneto-resistive magnetometer of BCU on the tatiana-2 satellite

Li Yeh Liu, Shyh Blau Jiang, Tse Liang Yeh, Huey Ching Yeh, Jann Yeng Liu, Ying Hao Hsu, Ji Yi Peng

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


The magneto-resistive magnetometer (MRM) of the Block of Central University (BCU) payload onboard the Tatiana-2 satellite is made of anisotropic magneto-resistive (AMR) sensor chips, which have appealing features of small size (10 x 15 x 7 mm 3), light weight (2 grams) and low power consumption (100 mW). The small MRM is packaged together with other instrument/subsystems of the BCU into a 1.6 kg payload box for convenient installation. In this report, we present the design, calibration, and flight data analysis of the MRM. In particular, the detailed methods of pre-flight calibrations are described. The calibrated data revealed typical patterns of the global geo-magnetic field structure and of field-aligned current (FAC) distribution in the high latitude ionosphere, though the MRM of BCU only has a resolution of 24 nT and a sampling rate of 2.22 Hz. Moreover, the current density derived from our magnetic field measurements are about 2 and 3 uA m -2, respectively, for downward and upward FAC, which are comparable to those typically observed at auroral latitudes during a quiet geomagnetic condition.

Original languageEnglish
Pages (from-to)317-326
Number of pages10
JournalTerrestrial, Atmospheric and Oceanic Sciences
Issue number3
StatePublished - Jun 2012


  • Amr sensor
  • Field-aligned current
  • Ionosphere
  • Magneto-resistive magnetometer
  • Pre-flight calibration
  • Taiwan
  • Tatiana-2


Dive into the research topics of 'The magneto-resistive magnetometer of BCU on the tatiana-2 satellite'. Together they form a unique fingerprint.

Cite this