The initiation and growth of filamentous carbon from α-iron in H2, CH4, H2O, CO2, and CO gas mixtures

Albert Sacco, Pradeep Thacker, Tzyh Nan Chang, Anthony T.S. Chiang

Research output: Contribution to journalArticlepeer-review

132 Scopus citations


The initiation and growth mechanisms of filamentous carbon over iron foils were studied at 900 K and 1 bar pressure. Various gas mixtures of CO, CO2, CH4, H2, and H2O were used to fix the solid phase compositions based on nonequilibrium phase diagrams. Solid phase compositions were verified using X-ray and electron diffraction. Gravimetric analysis indicated that in dry gas mixtures the initial rate of fractional weight gain was a direct function of the PCO PH2 product; for water containing experiments it was related to the PH2O P H2PCO ratio. X-Ray diffraction analysis of the solid suggested that the maximum rate of fractional weight gain coincided with complete carbiding of the "surface" layers. Examination of the foils in an electron microscope indicated the surface breaks up into a nodular morphology, and these nodules are comprised of filamentous carbon. An initiation mechanism is proposed which assumes that Fe3C acts to increase over all surface area through surface breakup and also acts as a catalyst for carbon deposition and subsequent filament growth.

Original languageEnglish
Pages (from-to)224-236
Number of pages13
JournalJournal of Catalysis
Issue number1
StatePublished - Jan 1984


Dive into the research topics of 'The initiation and growth of filamentous carbon from α-iron in H<sub>2</sub>, CH<sub>4</sub>, H<sub>2</sub>O, CO<sub>2</sub>, and CO gas mixtures'. Together they form a unique fingerprint.

Cite this