## Abstract

The odd signature operator is a Dirac operator which acts on the space of differential forms of all degrees and whose square is the usual Laplacian. We extend the result see (J. Geom. Phys. 57 (2007) 1951-1976) to prove the gluing formula of the zeta-determinants of Laplacians acting on differential forms of all degrees with respect to the boundary conditions P-,L_{0}, P+,L_{1}. We next consider a double of de Rham complexes consisting of differential forms of all degrees with the absolute and relative boundary conditions. Using a similar method, we prove the gluing formula of the zeta-determinants of Laplacians acting on differential forms of all degrees with respect to the absolute and relative boundary conditions.

Original language | English |
---|---|

Pages (from-to) | 537-560 |

Number of pages | 24 |

Journal | Illinois Journal of Mathematics |

Volume | 58 |

Issue number | 2 |

DOIs | |

State | Published - 1 Jun 2014 |