TY - JOUR
T1 - The fate of river discharge on the continental shelf 2. Transport of coastal low-salinity waters under realistic wind and tidal forcing
AU - Kourafalou, Vassiliki H.
AU - Lee, Thomas N.
AU - Oey, Lie Yauw
AU - Wang, John D.
PY - 1996
Y1 - 1996
N2 - A three-dimensional numerical simulation of shelf circulation is presented. We employ realistic forcing for the Southeast U.S. Continental Shelf during the spring season. We show that the strongest offshore transport of river-induced, coastal, low-salinity waters and associated materials occurs near the surface. The preferred mean pathway is in the northeastward direction, and it takes about 2 months to cross the entire shelf. Owing to the mean direction of surface transport and the topography of the South Atlantic Bight shelf, the preferred location for springtime removal is off Charleston, South Carolina, and presumably in the vicinity of the Charleston Bump. The transport and fate of the river-induced, coastal, low-salinity waters during the spring season are determined by (1) the stratification of nearshore waters, which is due to the high river runoff and causes the decoupling between "near-surface" and "near-bottom" layers; (2) the prevailing northeastward winds, which cause significant offshore transport within the shallow near-surface Ekman layer; and (3) the tidally induced bottom stirring (M2 tides). Comparison of model and data time series of currents shows very good agreement. Standard deviations of the model and datacomputed empirical orthogonal functions are almost identical, while the respective variance-conserving spectra agree both in amplitude and phase.
AB - A three-dimensional numerical simulation of shelf circulation is presented. We employ realistic forcing for the Southeast U.S. Continental Shelf during the spring season. We show that the strongest offshore transport of river-induced, coastal, low-salinity waters and associated materials occurs near the surface. The preferred mean pathway is in the northeastward direction, and it takes about 2 months to cross the entire shelf. Owing to the mean direction of surface transport and the topography of the South Atlantic Bight shelf, the preferred location for springtime removal is off Charleston, South Carolina, and presumably in the vicinity of the Charleston Bump. The transport and fate of the river-induced, coastal, low-salinity waters during the spring season are determined by (1) the stratification of nearshore waters, which is due to the high river runoff and causes the decoupling between "near-surface" and "near-bottom" layers; (2) the prevailing northeastward winds, which cause significant offshore transport within the shallow near-surface Ekman layer; and (3) the tidally induced bottom stirring (M2 tides). Comparison of model and data time series of currents shows very good agreement. Standard deviations of the model and datacomputed empirical orthogonal functions are almost identical, while the respective variance-conserving spectra agree both in amplitude and phase.
UR - http://www.scopus.com/inward/record.url?scp=0029656635&partnerID=8YFLogxK
U2 - 10.1029/95JC03025
DO - 10.1029/95JC03025
M3 - 期刊論文
AN - SCOPUS:0029656635
SN - 0148-0227
VL - 101
SP - 3435
EP - 3455
JO - Journal of Geophysical Research E: Planets
JF - Journal of Geophysical Research E: Planets
IS - C2
M1 - 95JC03025
ER -