The critical role of respiratory sinus arrhythmia on temporal cardiac dynamics

Chien Hung Yeh, Chung Hau Juan, Huei Ming Yeh, Cheng Yen Wang, Hsu Wen Vincent Young, Jiunn Lee Lin, Chen Lin, Lian Yu Lin, Men Tzung Lo

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


Temporal cardiac properties provide alternative information in analyzing heart rate variability (HRV), which may be disregarded by the standard HRV analyses. Patients with congestive heart failure (CHF) are known to have distinct temporal features from the healthy individuals. However, the underlying mechanism leading to the variation remains unclear. Whether or not these parameters can finely classify the severity for CHF patients is uncertain as well. In this work, an electrocardiogram was monitored in advanced CHF patients using 24-h Holter in four conditions, including baseline, one and three months after atenolol therapy, and healthy individuals. Slope and area under the curve (AUC) of multiscale entropy (MSE) curve over short (scales 1-5) and long (scales 6-20) scales, and detrended fluctuation analysis (DFA) scaling exponents at short (4-11 beats) and intermediate (<11 beats) window sizes were calculated. The results show that short-time scale MSE-derived parameters (slope:-0.08 ± 0.10,-0.03 ± 0.10, 0.02 ± 0.06, 0.08 ± 0.06; AUC: 4.03 ± 2.11, 4.69 ± 1.28, 4.73 ± 0.94, and 6.17 ± 1.23) and short-time scale DFA exponent (0.79 ± 0.16, 0.95 ± 0.22, 1.11 ± 0.19, and 1.35 ± 0.20) can hierarchically classify all four conditions. More importantly, simulated R-R intervals with different fractions and amplitude of respiratory sinus arrhythmia (RSA) components were examined to validate our hypothesis regarding the essentiality of RSA in the improvement of cardiovascular function, and its tight association with unpredictability and fractal property of HRV, which is in line with our hypothesis that RSA contributes significantly to the generation of the unpredictability and fractal behavior of HR dynamics. NEW & NOTEWORTHY Temporal cardiac properties provide useful diagnostic parameters for patients with congestive heart failure (CHF). Our study hierarchically classified CHF patients with β-blocker treatment by using multiscale entropy and detrended fluctuation analysis. Also, we provided the evidence to validate the critical role of respiratory sinus arrhythmia in the fractal properties of heart rate variability.

Original languageEnglish
Pages (from-to)1733-1741
Number of pages9
JournalJournal of Applied Physiology
Issue number6
StatePublished - 12 Dec 2019


  • Congestive heart failure
  • Detrended fluctuation analysis
  • Heart rate variability
  • Multiscale entropy
  • Respiratory sinus arrhythmia


Dive into the research topics of 'The critical role of respiratory sinus arrhythmia on temporal cardiac dynamics'. Together they form a unique fingerprint.

Cite this