The Clebsch–Gordan Rule for U(sl2), the Krawtchouk Algebras and the Hamming Graphs

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Let D ≥ 1 and q ≥ 3 be two integers. Let H(D) = H(D, q) denote the D-dimensional Hamming graph over a q-element set. Let T (D) denote the Terwilliger algebra of H(D). Let V (D) denote the standard T (D)-module. Let ω denote a complex scalar. We consider a unital associative algebra Kω defined by generators and relations. The generators are A and B. The relations are A2B − 2ABA + BA2 = B + ωA, B2A − 2BAB + AB2 = A + ωB. The algebra Kω is the case of the Askey–Wilson algebras corresponding to the Krawtchouk polynomials. The algebra Kω is isomorphic to U(sl2) when ω2 ≠ 1. We view V (D) as a K1− 2-module. We apply the Clebsch–Gordan rule for U(sl2) q to decompose V (D) into a direct sum of irreducible T (D)-modules.

Original languageEnglish
Article number017
JournalSymmetry, Integrability and Geometry: Methods and Applications (SIGMA)
Volume19
DOIs
StatePublished - 2023

Keywords

  • Clebsch–Gordan rule
  • Hamming graph
  • Krawtchouk algebra
  • Terwilliger algebra

Fingerprint

Dive into the research topics of 'The Clebsch–Gordan Rule for U(sl2), the Krawtchouk Algebras and the Hamming Graphs'. Together they form a unique fingerprint.

Cite this