TY - JOUR
T1 - Strontium doping effect on phase homogeneity and conductivity of Ba 1-xSrxCe0.6Zr0.2Y 0.2O3-δ proton-conducting oxides
AU - Lee, Kan Rong
AU - Tseng, Chung Jen
AU - Chang, Jeng Kuei
AU - Hung, I. Ming
AU - Lin, Jing Chie
AU - Lee, Sheng Wei
N1 - Funding Information:
The research is supported by National Nano Device Laboratories and National Science Council of Taiwan under Contracts No. NSC 101-3113-P-008-006 and NSC 100-2221-E- 008-016-MY3 . The authors also thank National Nano Device Laboratories and Center for Nano Science and Technology at National Central University for the facility support.
PY - 2013/8/21
Y1 - 2013/8/21
N2 - Ba1-xSrxCe0.6Zr0.2Y 0.2O3-δ (0.0 ≤ x ≤ 1.0) proton-conducting oxides have been prepared using a citrate-EDTA complexing solegel method. In this study, the relationship between the Sr doping content and microstructure, chemical stability against CO2, and conductivity of the sintered Ba1-xSrxCe0.6Zr0.2Y 0.2O3-δ pallets are systematically investigated using XRD, SEM, micro-Raman spectroscopy, and dc two-probe measurements. All sintered Ba1-xSrxCe0.6Zr0.2Y 0.2O3-δ oxides exhibit excellent chemical stability after being exposed to the CO2 ambient at 600 °C for a long duration; nevertheless, their microstructures and conductivities are very sensitive to the Sr doping amount. The Sr incorporation is found to apparently suppress the formation of CeO2-like second phase, and enhance the grain growth in sintered oxides. Among all sintered samples, the Ba 0.8Sr0.2Ce0.6Zr0.2Y 0.2O3-δ pallet has the highest conductivity, 0.009 S/cm at 800 °C. This result can be attributed to the competition between the elimination of CeO2- or (Zr,Ce,Y)O2-like phase inhomogeneity and enhanced grain growth in sintered oxides, both of which adversely influence the ionic conductivity. This work demonstrates that Ba 1-xSrxCe0.6Zr0.2Y 0.2O3-δ would be a promising electrolyte for H +-SOFC applications if the Sr doping iswell controlled.
AB - Ba1-xSrxCe0.6Zr0.2Y 0.2O3-δ (0.0 ≤ x ≤ 1.0) proton-conducting oxides have been prepared using a citrate-EDTA complexing solegel method. In this study, the relationship between the Sr doping content and microstructure, chemical stability against CO2, and conductivity of the sintered Ba1-xSrxCe0.6Zr0.2Y 0.2O3-δ pallets are systematically investigated using XRD, SEM, micro-Raman spectroscopy, and dc two-probe measurements. All sintered Ba1-xSrxCe0.6Zr0.2Y 0.2O3-δ oxides exhibit excellent chemical stability after being exposed to the CO2 ambient at 600 °C for a long duration; nevertheless, their microstructures and conductivities are very sensitive to the Sr doping amount. The Sr incorporation is found to apparently suppress the formation of CeO2-like second phase, and enhance the grain growth in sintered oxides. Among all sintered samples, the Ba 0.8Sr0.2Ce0.6Zr0.2Y 0.2O3-δ pallet has the highest conductivity, 0.009 S/cm at 800 °C. This result can be attributed to the competition between the elimination of CeO2- or (Zr,Ce,Y)O2-like phase inhomogeneity and enhanced grain growth in sintered oxides, both of which adversely influence the ionic conductivity. This work demonstrates that Ba 1-xSrxCe0.6Zr0.2Y 0.2O3-δ would be a promising electrolyte for H +-SOFC applications if the Sr doping iswell controlled.
KW - Chemical stability
KW - Ionic conductivity
KW - Proton-conducting electrolyte
KW - Solid oxide fuel cells
UR - http://www.scopus.com/inward/record.url?scp=84883134375&partnerID=8YFLogxK
U2 - 10.1016/j.ijhydene.2013.01.043
DO - 10.1016/j.ijhydene.2013.01.043
M3 - 期刊論文
AN - SCOPUS:84883134375
SN - 0360-3199
VL - 38
SP - 11097
EP - 11103
JO - International Journal of Hydrogen Energy
JF - International Journal of Hydrogen Energy
IS - 25
ER -