Strain effect on orbital and magnetic structures of Mn ions in epitaxial Nd 0.35 Sr 0.65 MnO 3 /SrTiO 3 films using X-ray diffraction and absorption

Y. C. Shao, N. G. Deshpande, Y. Y. Chin, S. H. Hsieh, C. H. Du, H. T. Wang, J. W. Chiou, H. M. Tsai, H. J. Lin, S. L. Cheng, J. G. Lin, K. Asokan, P. H. Yeh, W. F. Pong

Research output: Contribution to journalArticlepeer-review

Abstract

This study probes the temperature-dependent strain that is strongly correlated with the orbital and magnetic structures of epitaxial films of Nd 0.35 Sr 0.65 MnO 3 (NSMO) that are fabricated by pulsed laser deposition with two thicknesses, 17 (NS17) and 103 nm (NS103) on SrTiO 3 (STO) substrate. This investigation is probed using X-ray diffraction (XRD) and absorption-based techniques, X-ray linear dichroism (XLD) and the X-ray magnetic circular dichroism (XMCD). XRD indicates a significant shift in the (004) peak position that is associated with larger strain in NS17 relative to that of NS103 at both 30 and 300 K. Experimental and atomic multiplet simulated temperature-dependent Mn L 3,2 -edge XLD results reveal that the stronger strain in a thinner NS17 film causes less splitting of Mn 3d e g state at low temperature, indicating an enhancement of orbital fluctuations in the band above the Fermi level. This greater Mn 3d orbital fluctuation can be the cause of both the enhanced ferromagnetism (FM) as a result of spin moments and the reduced Néel temperature of C-type antiferromagnetism (AFM) in NS17, leading to the FM coupling of the canted-antiferromagnetism (FM-cAFM) state in NSMO/STO epitaxial films at low temperature (T = 30 K). These findings are also confirmed by Mn L 3,2 -edge XMCD measurements.

Original languageEnglish
Article number5160
JournalScientific Reports
Volume9
Issue number1
DOIs
StatePublished - 1 Dec 2019

Fingerprint

Dive into the research topics of 'Strain effect on orbital and magnetic structures of Mn ions in epitaxial Nd <sub>0.35</sub> Sr <sub>0.65</sub> MnO <sub>3</sub> /SrTiO <sub>3</sub> films using X-ray diffraction and absorption'. Together they form a unique fingerprint.

Cite this