Speech emotion classification using multiple kernel Gaussian process

Sih Huei Chen, Jia Ching Wang, Wen Chi Hsieh, Yu Hao Chin, Chin Wen Ho, Chung Hsien Wu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

Given the increasing attention paid to speech emotion classification in recent years, this work presents a novel speech emotion classification approach based on the multiple kernel Gaussian process. Two major aspects of a classification problem that play an important role in classification accuracy are addressed, i.e. feature extraction and classification. Prosodic features and other features widely used in sound effect classification are selected. A semi-nonnegative matrix factorization algorithm is then applied to the proposed features in order to obtain more information about the features. Following feature extraction, a multiple kernel Gaussian process (GP) is used for classification, in which two similarity notions from our data in the learning algorithm are presented by combining the linear kernel and radial basis function (RBF) kernel. According to our results, the proposed speech emotion classification apporach achieve an accuracy of 77.74%. Moreover, comparing different apporaches reveals that the proposed system performs best than other apporaches.

Original languageEnglish
Title of host publication2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9789881476821
DOIs
StatePublished - 17 Jan 2017
Event2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016 - Jeju, Korea, Republic of
Duration: 13 Dec 201616 Dec 2016

Publication series

Name2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016

Conference

Conference2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016
Country/TerritoryKorea, Republic of
CityJeju
Period13/12/1616/12/16

Keywords

  • multiple kernel Gaussian process
  • semi-nonnegative matrix factorization
  • Speech emotion classification

Fingerprint

Dive into the research topics of 'Speech emotion classification using multiple kernel Gaussian process'. Together they form a unique fingerprint.

Cite this