Spark ignition transitions in premixed turbulent combustion

Research output: Contribution to journalReview articlepeer-review

4 Scopus citations

Abstract

Recent discoveries and developments on the dynamic process of premixed turbulent spark ignition are reviewed. The focus here is on the variation of turbulent minimum ignition energies (MIET) against laminar MIE (MIEL) over a wide range of r.m.s. turbulence fluctuation velocity (uʹ) alongside effects of the spark gap between electrodes, Lewis number, and some other parameters on MIE. Two distinguishable spark ignition transitions are discussed. (1) A monotonic MIE transition, where MIEL sets the lower bound, marks a critical uʹc between linear and exponential increase in MIET with uʹ increased. (2) A non-monotonic MIE transition, where the lower bound is to be set by a MIET at some uʹc, stems from a great influence of Lewis number and spark gap despite turbulence. At sufficiently large Lewis number >> 1 and small spark gap (typically less than 1 mm), turbulence facilitated ignition (TFI), where MIET < MIEL, occurs; then MIET increases rapidly at larger uʹ > uʹc because turbulence re-asserts its dominating role. Both phenomena are explained by the coupling effects of differential diffusion, heat losses to electrodes, and turbulence on the spark kernel. In particular, the ratio of small-scale turbulence diffusivity to reaction zone thermal diffusivity, a reaction zone Péclet number, captures the similarity of monotonic MIE transition, regardless of different ignition sources (conventional electrodes versus laser), turbulent flows, pressure, and fuel types. Furthermore, TFI does and/or does not occur when conventional spark is replaced by nanosecond-repetitively-pulsed-discharge and/or laser spark. The latter is attributed to the third lobe formation of laser kernel with some negative curvature segments that enhance reaction rate through differential diffusion, where MIEL < MIET (no TFI). Finally, the implications of MIE transitions relevant to lean-burn spark ignition engines are briefly mentioned, and future studies are suggested.

Original languageEnglish
Article number101099
JournalProgress in Energy and Combustion Science
Volume98
DOIs
StatePublished - Sep 2023

Keywords

  • Lean-burn premixed turbulent combustion
  • Minimum ignition energy (MIE)
  • Monotonic MIE transition
  • Non-monotonic MIE transition
  • Turbulence facilitated ignition
  • Turbulent premixed spark ignition

Fingerprint

Dive into the research topics of 'Spark ignition transitions in premixed turbulent combustion'. Together they form a unique fingerprint.

Cite this