Projects per year
Abstract
For any f∈ Hp(D) (p> 0) , the Hardy space over the unit disk, we characterize completely the triple (α, p, q) ∈ (- 1 , ∞) × (0 , ∞) 2 such that the Cesàro partial sum σnαf converges in norm in Hq(D) , and in the Bergman space Laq(D) , respectively. This extends recent results of McNeal–Xiong and of Park–Zhao–Zhu, and complements a classical theorem of Hardy-Littlewood in 1934.
Original language | English |
---|---|
Article number | 290 |
Journal | Journal of Geometric Analysis |
Volume | 33 |
Issue number | 9 |
DOIs | |
State | Published - Sep 2023 |
Keywords
- Bergman space
- Cesàro polynomial
- Hardy space
- Norm convergence
- Taylor polynomial
Fingerprint
Dive into the research topics of 'Sharp Cesàro Convergence in the Hardy Spaces Revisited'. Together they form a unique fingerprint.Projects
- 1 Finished