Sensitivity analysis of mapping local image features into conceptual categories

Chih Fong Tsai, David C. Yen

Research output: Contribution to journalArticlepeer-review

Abstract

Purpose - Image classification or more specifically, annotating images with keywords is one of the important steps during image database indexing. However, the problem with current research in terms of image retrieval is more concentrated on how conceptual categories can be well represented by extracted, low level features for an effective classification. Consequently, image features representation including segmentation and low-level feature extraction schemes must be genuinely effective to facilitate the process of classification. The purpose of this paper is to examine the effect on annotation effectiveness of using different (local) feature representation methods to map into conceptual categories. Design/methodology/approach - This paper compares tiling (five and nine tiles) and regioning (five and nine regions) segmentation schemes and the extraction of combinations of color, texture, and edge features in terms of the effectiveness of a particular benchmark, automatic image annotation set up. Differences between effectiveness on concrete or abstract conceptual categories or keywords are further investigated, and progress towards establishing a particular benchmark approach is also reported. Findings - In the context of local feature representation, the paper concludes that the combined color and texture features are the best to use for the five tiling and regioning schemes, and this evidence would form a good benchmark for future studies. Another interesting finding (but perhaps not surprising) is that when the number of concrete and abstract keywords increases or it is large (e.g. 100), abstract keywords are more difficult to assign correctly than the concrete ones. Researchlimitations/implications - Future work could consider: conduct user-centered evaluation instead of evaluation only by some chosen ground truth dataset, such as Corel, since this might impact effectiveness results; use of different numbers of categories for scalability analysis of image annotation as well as larger numbers of training and testing examples; use of Principle Component Analysis or Independent Component Analysis, or indeed machine learning techniques for low-level feature selection; use of other segmentation schemes, especially more complex tiling schemes and other regioning schemes; use of different datasets, use of other low-level features and/or combination of them; use of other machine learning techniques. Originality/value - This paper is a good start for analyzing the mapping between some feature representation methods and various conceptual categories for future image annotation research.

Original languageEnglish
Pages (from-to)255-273
Number of pages19
JournalLibrary Hi Tech
Volume26
Issue number2
DOIs
StatePublished - 2008

Keywords

  • Sensitivity analysis
  • Statistical analysis

Fingerprint

Dive into the research topics of 'Sensitivity analysis of mapping local image features into conceptual categories'. Together they form a unique fingerprint.

Cite this