TY - JOUR
T1 - Segmentation of human body parts using deformable triangulation
AU - Hsieh, Jun Wei
AU - Chuang, Chi Hung
AU - Chen, Sin Yu
AU - Chen, Chih Chiang
AU - Fan, Kuo Chin
N1 - Funding Information:
Manuscript received April 26, 2008; revised March 16, 2009. First published March 4, 2010; current version published April 14, 2010. This work was supported in part by the National Science Council of Taiwan under Grant NSC97-2221-E-155-060 and in part by the Ministry of Economic Affairs under Contract 97-EC-17-A-02-S1-032. This paper was recommended by Associate Editor Q. Ji.
PY - 2010/5
Y1 - 2010/5
N2 - This paper presents a novel segmentation algorithm to segment a body posture into different body parts using the technique of deformable triangulation. To analyze each posture more accurately, they are segmented into triangular meshes, where a spanning tree can be found from the meshes using a depth-first search scheme. Then, we can decompose the tree into different subsegments, where each subsegment can be considered as a limb. Then, two hybrid methods (i.e., the skeleton-based and model-driven methods) are proposed for segmenting the posture into different body parts according to its occlusion conditions. To analyze occlusion conditions, a novel clustering scheme is proposed to cluster the training samples into a set of key postures. Then, a model space can be used to classify and segment each posture. If the input posture belongs to the nonocclusion category, the skeleton-based method is used to divide it into different body parts that can be refined using a set of Gaussian mixture models (GMMs). For the occlusion case, we propose a model-driven technique to select a good reference model for guiding the process of body part segmentation. However, if two postures' contours are similar, there will be some ambiguity that can lead to failure during the model selection process. Thus, this paper proposes a tree structure that uses a tracking technique so that the best model can be selected not only from the current frame but also from its previous frame. Then, a suitable GMM-based segmentation scheme can be used to finely segment a body posture into the different body parts. The experimental results show that the proposed method for body part segmentation is robust, accurate, and powerful.
AB - This paper presents a novel segmentation algorithm to segment a body posture into different body parts using the technique of deformable triangulation. To analyze each posture more accurately, they are segmented into triangular meshes, where a spanning tree can be found from the meshes using a depth-first search scheme. Then, we can decompose the tree into different subsegments, where each subsegment can be considered as a limb. Then, two hybrid methods (i.e., the skeleton-based and model-driven methods) are proposed for segmenting the posture into different body parts according to its occlusion conditions. To analyze occlusion conditions, a novel clustering scheme is proposed to cluster the training samples into a set of key postures. Then, a model space can be used to classify and segment each posture. If the input posture belongs to the nonocclusion category, the skeleton-based method is used to divide it into different body parts that can be refined using a set of Gaussian mixture models (GMMs). For the occlusion case, we propose a model-driven technique to select a good reference model for guiding the process of body part segmentation. However, if two postures' contours are similar, there will be some ambiguity that can lead to failure during the model selection process. Thus, this paper proposes a tree structure that uses a tracking technique so that the best model can be selected not only from the current frame but also from its previous frame. Then, a suitable GMM-based segmentation scheme can be used to finely segment a body posture into the different body parts. The experimental results show that the proposed method for body part segmentation is robust, accurate, and powerful.
KW - Abnormal event detection
KW - Behavior analysis
KW - Body part segmentation
KW - Video surveillance
UR - http://www.scopus.com/inward/record.url?scp=77951207029&partnerID=8YFLogxK
U2 - 10.1109/TSMCA.2010.2040272
DO - 10.1109/TSMCA.2010.2040272
M3 - 期刊論文
AN - SCOPUS:77951207029
SN - 1083-4427
VL - 40
SP - 596
EP - 610
JO - IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans.
JF - IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans.
IS - 3
M1 - 5424021
ER -