TY - JOUR
T1 - Seasonality of the particle number concentration and size distribution
T2 - A global analysis retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories
AU - Rose, Clemence
AU - Collaud Coen, Martine
AU - Andrews, Elisabeth
AU - Lin, Yong
AU - Bossert, Isaline
AU - Lund Myhre, Cathrine
AU - Tuch, Thomas
AU - Wiedensohler, Alfred
AU - Fiebig, Markus
AU - Aalto, Pasi
AU - Alastuey, Andres
AU - Alonso-Blanco, Elisabeth
AU - Andrade, Marcos
AU - Artinano, Begona
AU - Arsov, Todor
AU - Baltensperger, Urs
AU - Bastian, Susanne
AU - Bath, Olaf
AU - Beukes, Johan Paul
AU - Brem, Benjamin T.
AU - Bukowiecki, Nicolas
AU - Casquero-Vera, Juan Andres
AU - Conil, Sebastien
AU - Eleftheriadis, Konstantinos
AU - Favez, Olivier
AU - Flentje, Harald
AU - Gini, Maria I.
AU - Gomez-Moreno, Francisco Javier
AU - Gysel-Beer, Martin
AU - Hallar, Anna Gannet
AU - Kalapov, Ivo
AU - Kalivitis, Nikos
AU - Kasper-Giebl, Anne
AU - Keywood, Melita
AU - Kim, Jeong Eun
AU - Kim, Sang Woo
AU - Kristensson, Adam
AU - Kulmala, Markku
AU - Lihavainen, Heikki
AU - Lin, Neng Huei
AU - Lyamani, Hassan
AU - Marinoni, Angela
AU - Martins Dos Santos, Sebastiao
AU - Mayol-Bracero, Olga L.
AU - Meinhardt, Frank
AU - Merkel, Maik
AU - Metzger, Jean Marc
AU - Mihalopoulos, Nikolaos
AU - Ondracek, Jakub
AU - Pandolfi, Marco
AU - Perez, Noemi
AU - Petaja, Tuukka
AU - Petit, Jean Eudes
AU - Picard, David
AU - Pichon, Jean Marc
AU - Pont, Veronique
AU - Putaud, Jean Philippe
AU - Reisen, Fabienne
AU - Sellegri, Karine
AU - Sharma, Sangeeta
AU - Schauer, Gerhard
AU - Sheridan, Patrick
AU - Sherman, James Patrick
AU - Schwerin, Andreas
AU - Sohmer, Ralf
AU - Sorribas, Mar
AU - Sun, Junying
AU - Tulet, Pierre
AU - Vakkari, Ville
AU - Van Zyl, Pieter Gideon
AU - Velarde, Fernando
AU - Villani, Paolo
AU - Vratolis, Stergios
AU - Wagner, Zdenek
AU - Wang, Sheng Hsiang
AU - Weinhold, Kay
AU - Weller, Rolf
AU - Yela, Margarita
AU - Zdimal, Vladimir
AU - Laj, Paolo
N1 - Publisher Copyright:
© Copyright:
PY - 2021/11/25
Y1 - 2021/11/25
N2 - Aerosol particles are a complex component of the atmospheric system which influence climate directly by interacting with solar radiation, and indirectly by contributing to cloud formation. The variety of their sources, as well as the multiple transformations they may undergo during their transport (including wet and dry deposition), result in significant spatial and temporal variability of their properties. Documenting this variability is essential to provide a proper representation of aerosols and cloud condensation nuclei (CCN) in climate models. Using measurements conducted in 2016 or 2017 at 62 ground-based stations around the world, this study provides the most up-to-date picture of the spatial distribution of particle number concentration (Ntot) and number size distribution (PNSD, from 39 sites). A sensitivity study was first performed to assess the impact of data availability on Ntot's annual and seasonal statistics, as well as on the analysis of its diel cycle. Thresholds of 50g% and 60g% were set at the seasonal and annual scale, respectively, for the study of the corresponding statistics, and a slightly higher coverage (75g%) was required to document the diel cycle. Although some observations are common to a majority of sites, the variety of environments characterizing these stations made it possible to highlight contrasting findings, which, among other factors, seem to be significantly related to the level of anthropogenic influence. The concentrations measured at polar sites are the lowest (g1/4g102gcm-3) and show a clear seasonality, which is also visible in the shape of the PNSD, while diel cycles are in general less evident, due notably to the absence of a regular day-night cycle in some seasons. In contrast, the concentrations characteristic of urban environments are the highest (g1/4g103-104gcm-3) and do not show pronounced seasonal variations, whereas diel cycles tend to be very regular over the year at these stations. The remaining sites, including mountain and non-urban continental and coastal stations, do not exhibit as obvious common behaviour as polar and urban sites and display, on average, intermediate Ntot (g1/4g102-103gcm-3). Particle concentrations measured at mountain sites, however, are generally lower compared to nearby lowland sites, and tend to exhibit somewhat more pronounced seasonal variations as a likely result of the strong impact of the atmospheric boundary layer (ABL) influence in connection with the topography of the sites. ABL dynamics also likely contribute to the diel cycle of Ntot observed at these stations. Based on available PNSD measurements, CCN-sized particles (considered here as either >50gnm or >100gnm) can represent from a few percent to almost all of Ntot, corresponding to seasonal medians on the order of g1/4g10 to 1000gcm-3, with seasonal patterns and a hierarchy of the site types broadly similar to those observed for Ntot. Overall, this work illustrates the importance of in situ measurements, in particular for the study of aerosol physical properties, and thus strongly supports the development of a broad global network of near surface observatories to increase and homogenize the spatial coverage of the measurements, and guarantee as well data availability and quality. The results of this study also provide a valuable, freely available and easy to use support for model comparison and validation, with the ultimate goal of contributing to improvement of the representation of aerosol-cloud interactions in models, and, therefore, of the evaluation of the impact of aerosol particles on climate.
AB - Aerosol particles are a complex component of the atmospheric system which influence climate directly by interacting with solar radiation, and indirectly by contributing to cloud formation. The variety of their sources, as well as the multiple transformations they may undergo during their transport (including wet and dry deposition), result in significant spatial and temporal variability of their properties. Documenting this variability is essential to provide a proper representation of aerosols and cloud condensation nuclei (CCN) in climate models. Using measurements conducted in 2016 or 2017 at 62 ground-based stations around the world, this study provides the most up-to-date picture of the spatial distribution of particle number concentration (Ntot) and number size distribution (PNSD, from 39 sites). A sensitivity study was first performed to assess the impact of data availability on Ntot's annual and seasonal statistics, as well as on the analysis of its diel cycle. Thresholds of 50g% and 60g% were set at the seasonal and annual scale, respectively, for the study of the corresponding statistics, and a slightly higher coverage (75g%) was required to document the diel cycle. Although some observations are common to a majority of sites, the variety of environments characterizing these stations made it possible to highlight contrasting findings, which, among other factors, seem to be significantly related to the level of anthropogenic influence. The concentrations measured at polar sites are the lowest (g1/4g102gcm-3) and show a clear seasonality, which is also visible in the shape of the PNSD, while diel cycles are in general less evident, due notably to the absence of a regular day-night cycle in some seasons. In contrast, the concentrations characteristic of urban environments are the highest (g1/4g103-104gcm-3) and do not show pronounced seasonal variations, whereas diel cycles tend to be very regular over the year at these stations. The remaining sites, including mountain and non-urban continental and coastal stations, do not exhibit as obvious common behaviour as polar and urban sites and display, on average, intermediate Ntot (g1/4g102-103gcm-3). Particle concentrations measured at mountain sites, however, are generally lower compared to nearby lowland sites, and tend to exhibit somewhat more pronounced seasonal variations as a likely result of the strong impact of the atmospheric boundary layer (ABL) influence in connection with the topography of the sites. ABL dynamics also likely contribute to the diel cycle of Ntot observed at these stations. Based on available PNSD measurements, CCN-sized particles (considered here as either >50gnm or >100gnm) can represent from a few percent to almost all of Ntot, corresponding to seasonal medians on the order of g1/4g10 to 1000gcm-3, with seasonal patterns and a hierarchy of the site types broadly similar to those observed for Ntot. Overall, this work illustrates the importance of in situ measurements, in particular for the study of aerosol physical properties, and thus strongly supports the development of a broad global network of near surface observatories to increase and homogenize the spatial coverage of the measurements, and guarantee as well data availability and quality. The results of this study also provide a valuable, freely available and easy to use support for model comparison and validation, with the ultimate goal of contributing to improvement of the representation of aerosol-cloud interactions in models, and, therefore, of the evaluation of the impact of aerosol particles on climate.
UR - http://www.scopus.com/inward/record.url?scp=85120413901&partnerID=8YFLogxK
U2 - 10.5194/acp-21-17185-2021
DO - 10.5194/acp-21-17185-2021
M3 - 期刊論文
AN - SCOPUS:85120413901
SN - 1680-7316
VL - 21
SP - 17185
EP - 17223
JO - Atmospheric Chemistry and Physics
JF - Atmospheric Chemistry and Physics
IS - 22
ER -