RZ Leonis Minoris bridging between ER Ursae Majoris-Type dwarf nova & nova-like system

Taichi Kato, Ryoko Ishioka, Keisuke Isogai, Mariko Kimura, Akira Imada, Ian Miller, Kazunari Masumoto, Hirochika Nishino, Naoto Kojiguchi, Miho Kawabata, Daisuke Sakai, Yuki Sugiura, Hisami Furukawa, Kenta Yamamura, Hiroshi Kobayashi, Katsura Matsumoto, Shiang Yu Wang, Yi Chou, Chow Choong Ngeow, Wen Ping ChenNeelam Panwar, Chi Sheng Lin, Hsiang Yao Hsiao, Jhen Kuei Guo, Chien Cheng Lin, Chingis Omarov, Anatoly Kusakin, Maxim Krugov, Donn R. Starkey, Elena P. Pavlenko, Kirill A. Antonyuk, Aleksei A. Sosnjvskij, Oksana I. Antonyuk, Nikolai V. Pit, Alex V. Baklanov, Julia V. Babina, Hiroshi Itoh, Stefano Padovan, Hidehiko Akazawa, Stella Kafka, Enrique De Miguel, Roger D. Pickard, Seiichiro Kiyota, Sergey Yu Shugarov, Drahomir Chochol, Viktoriia Krushevska, Matej Seker ǎs, Olga Pikalova, Richard Sabo, Pavol A. Dubovsky, Igor Kudzej, Joseph Ulowetz, Shawn Dvorak, Geoff Stone, Tamás Tordai, Franky Dubois, Ludwig Logie, Steve Rau, Siegfried Vanaverbeke, Tonny Vanmunster, Arto Oksanen, Yutaka Maeda, Kiyoshi Kasai, Natalia Katysheva, Etienne Morelle, Vitaly V. Neustroev, George Sjoberg

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

We observed RZ LMI, which is renowned for its extremely short (∼19 d) supercycle and is a member of a small, unusual class of cataclysmic variables called ERUMa-Type dwarf novae, in 2013 and 2016. In 2016, the supercycles of this object substantially lengthened in comparison to the previous measurements to 35, 32, and 60 d for three consecutive superoutbursts.We consider that the object virtually experienced a transition to the novalike state (permanent superhumper). This observed behavior reproduced the prediction of the thermal-Tidal instability model extremely well. We detected a precursor in the 2016 superoutburst and detected growing (stage A) superhumps with a mean period of 0.0602(1) d in 2016 and in 2013. Combined with the period of superhumps immediately after the superoutburst, the mass ratio is not as small as in WZ Sge-Type dwarf novae, having orbital periods similar to RZ LMI. By using least absolute shrinkage and selection operator (Lasso) two-dimensional power spectra, we detected possible negative superhumps with a period of 0.05710(1) d. We estimated an orbital period of 0.05792 d, which suggests a mass ratio of 0.105(5). This relatively large mass ratio is even above that of ordinary SUUMa-Type dwarf novae, and it is also possible that the exceptionally high mass-Transfer rate in RZ LMI may be a result of a stripped secondary with an evolved core in a system evolving toward an AM CVn-Type object.

Original languageEnglish
Article number107
JournalPublications of the Astronomical Society of Japan
Volume68
Issue number6
DOIs
StatePublished - Oct 2016

Keywords

  • Accretion
  • Accretion disks-novae
  • Cataclysmic variables-stars: dwarf novae-stars: individual (rz leonis minoris)

Fingerprint

Dive into the research topics of 'RZ Leonis Minoris bridging between ER Ursae Majoris-Type dwarf nova & nova-like system'. Together they form a unique fingerprint.

Cite this