TY - JOUR
T1 - Removal of formaldehyde over MnxCe1-xO2 catalysts
T2 - Thermal catalytic oxidation versus ozone catalytic oxidation
AU - Li, Jia Wei
AU - Pan, Kuan Lun
AU - Yu, Sheng Jen
AU - Yan, Shaw Yi
AU - Chang, Moo Been
N1 - Publisher Copyright:
© 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.
PY - 2014/12/1
Y1 - 2014/12/1
N2 - MnxCe1-xO2 (x: 0.3-0.9) prepared by Pechini method was used as a catalyst for the thermal catalytic oxidation of formaldehyde (HCHO). At x=0.3 and 0.5, most of the manganese was incorporated in the fluorite structure of CeO2 to form a solid solution. The catalytic activity was best at x=0.5, at which the temperature of 100% removal rate is the lowest (270°C). The temperature for 100% removal of HCHO oxidation is reduced by approximately 40°C by loading 5wt.% CuOx into Mn0.5Ce0.5O2. With ozone catalytic oxidation, HCHO (61ppm) in gas stream was completely oxidized by adding 506ppm O3 over Mn0.5Ce0.5O2 catalyst with a GHSV (gas hourly space velocity) of 10,000hr-1 at 25°C. The effect of the molar ratio of O3 to HCHO was also investigated. As O3/HCHO ratio was increased from 3 to 8, the removal efficiency of HCHO was increased from 83.3% to 100%. With O3/HCHO ratio of 8, the mineralization efficiency of HCHO to CO2 was 86.1%. At 25°C, the p-type oxide semiconductor (Mn0.5Ce0.5O2) exhibited an excellent ozone decomposition efficiency of 99.2%, which significantly exceeded that of n-type oxide semiconductors such as TiO2, which had a low ozone decomposition efficiency (9.81%). At a GHSV of 10,000hr-1, [O3]/[HCHO]=3 and temperature of 25°C, a high HCHO removal efficiency (≥81.2%) was maintained throughout the durability test of 80hr, indicating the long-term stability of the catalyst for HCHO removal.
AB - MnxCe1-xO2 (x: 0.3-0.9) prepared by Pechini method was used as a catalyst for the thermal catalytic oxidation of formaldehyde (HCHO). At x=0.3 and 0.5, most of the manganese was incorporated in the fluorite structure of CeO2 to form a solid solution. The catalytic activity was best at x=0.5, at which the temperature of 100% removal rate is the lowest (270°C). The temperature for 100% removal of HCHO oxidation is reduced by approximately 40°C by loading 5wt.% CuOx into Mn0.5Ce0.5O2. With ozone catalytic oxidation, HCHO (61ppm) in gas stream was completely oxidized by adding 506ppm O3 over Mn0.5Ce0.5O2 catalyst with a GHSV (gas hourly space velocity) of 10,000hr-1 at 25°C. The effect of the molar ratio of O3 to HCHO was also investigated. As O3/HCHO ratio was increased from 3 to 8, the removal efficiency of HCHO was increased from 83.3% to 100%. With O3/HCHO ratio of 8, the mineralization efficiency of HCHO to CO2 was 86.1%. At 25°C, the p-type oxide semiconductor (Mn0.5Ce0.5O2) exhibited an excellent ozone decomposition efficiency of 99.2%, which significantly exceeded that of n-type oxide semiconductors such as TiO2, which had a low ozone decomposition efficiency (9.81%). At a GHSV of 10,000hr-1, [O3]/[HCHO]=3 and temperature of 25°C, a high HCHO removal efficiency (≥81.2%) was maintained throughout the durability test of 80hr, indicating the long-term stability of the catalyst for HCHO removal.
KW - Formaldehyde
KW - Indoor air pollutant
KW - Ozone catalytic oxidation
KW - Thermal catalytic oxidation
KW - Volatile organic compounds
UR - http://www.scopus.com/inward/record.url?scp=84915737476&partnerID=8YFLogxK
U2 - 10.1016/j.jes.2014.05.030
DO - 10.1016/j.jes.2014.05.030
M3 - 期刊論文
C2 - 25499503
AN - SCOPUS:84915737476
SN - 1001-0742
VL - 26
SP - 2546
EP - 2553
JO - Journal of Environmental Sciences (China)
JF - Journal of Environmental Sciences (China)
IS - 12
ER -