Removal of formaldehyde over MnxCe1-xO2 catalysts: Thermal catalytic oxidation versus ozone catalytic oxidation

Jia Wei Li, Kuan Lun Pan, Sheng Jen Yu, Shaw Yi Yan, Moo Been Chang

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

MnxCe1-xO2 (x: 0.3-0.9) prepared by Pechini method was used as a catalyst for the thermal catalytic oxidation of formaldehyde (HCHO). At x=0.3 and 0.5, most of the manganese was incorporated in the fluorite structure of CeO2 to form a solid solution. The catalytic activity was best at x=0.5, at which the temperature of 100% removal rate is the lowest (270°C). The temperature for 100% removal of HCHO oxidation is reduced by approximately 40°C by loading 5wt.% CuOx into Mn0.5Ce0.5O2. With ozone catalytic oxidation, HCHO (61ppm) in gas stream was completely oxidized by adding 506ppm O3 over Mn0.5Ce0.5O2 catalyst with a GHSV (gas hourly space velocity) of 10,000hr-1 at 25°C. The effect of the molar ratio of O3 to HCHO was also investigated. As O3/HCHO ratio was increased from 3 to 8, the removal efficiency of HCHO was increased from 83.3% to 100%. With O3/HCHO ratio of 8, the mineralization efficiency of HCHO to CO2 was 86.1%. At 25°C, the p-type oxide semiconductor (Mn0.5Ce0.5O2) exhibited an excellent ozone decomposition efficiency of 99.2%, which significantly exceeded that of n-type oxide semiconductors such as TiO2, which had a low ozone decomposition efficiency (9.81%). At a GHSV of 10,000hr-1, [O3]/[HCHO]=3 and temperature of 25°C, a high HCHO removal efficiency (≥81.2%) was maintained throughout the durability test of 80hr, indicating the long-term stability of the catalyst for HCHO removal.

Original languageEnglish
Pages (from-to)2546-2553
Number of pages8
JournalJournal of Environmental Sciences (China)
Volume26
Issue number12
DOIs
StatePublished - 1 Dec 2014

Keywords

  • Formaldehyde
  • Indoor air pollutant
  • Ozone catalytic oxidation
  • Thermal catalytic oxidation
  • Volatile organic compounds

Fingerprint

Dive into the research topics of 'Removal of formaldehyde over MnxCe1-xO2 catalysts: Thermal catalytic oxidation versus ozone catalytic oxidation'. Together they form a unique fingerprint.

Cite this