Reliability Analysis of Replicated And-Or Graphs

De Ron Liang, Rong Hong Jan, Satish K. Tripathi

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

A computation task running in distributed systems can be represented as a directed graph H(V, E) whose vertices and edges may fail with known probabilities. In this paper, we introduce a reliability measure, called the distributed task reliability, to model the reliability of such computation tasks. The distributed task reliability is defined as the probability that the task can be successfully executed. Due to the and-fork/and-join constraint, the traditional network reliability problem is a special case of the distributed task reliability problem, where the former s known to be NP-hard in general graphs. For two-terminal and-or series-parallel (AOSP) graphs, the distributed task reliability can be computed in polynomial time. We consider a graph Hk(V̂, Ê), named a k-replicated and-or series-parallel (RAOSP) graph, which is obtained from an AOSP graph H(V, E) by adding (k - 1) replications to each vertex and adding proper edges between two vertices. It can be she wn that the RAOSP graphs are not AOSP graphs; thus, the existing polynomial algorithm does not apply. Previously, only exponential time algorithms as used in general graphs are known for computing the reliability of Hk(V̂, Ê). In this paper, we present a linear time algorithm with O(K(|V| + |E|)) complexity to evaluate the reliability of the graph Hk(V̂, Ê), where K = max{k222k, 23k}.

Original languageEnglish
Pages (from-to)195-203
Number of pages9
JournalNetworks
Volume29
Issue number4
DOIs
StatePublished - Jul 1997

Fingerprint

Dive into the research topics of 'Reliability Analysis of Replicated And-Or Graphs'. Together they form a unique fingerprint.

Cite this