Relaxation analysis via line integral

Ji Chang Lo, Chen Mou Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

In this paper, sufficient LMI conditions for the H state feedback control synthesis of fuzzy control systems consisting of Takagi-Sugeno fuzzy models are proposed for continuous fuzzy systems. Based on a premise-dependent Lyapunov function, we release the conservatism that commonly exists in the common P approach. Particularly, the restriction embedded in continuous-time systems on derivative of μ is removed by introducing Lie derivative to the Lyapunov approach. It is shown that the slack variables employed in this paper provide additional feasibility in solving the H stabilization problem of fuzzy control systems. Consequently, the stabilization conditions are shown to be more relaxed than others in the existing literature. Numerical simulations appear promising for the proposed method and illuminate the reduction of conservatism clearly.

Original languageEnglish
Title of host publication2009 IEEE International Conference on Fuzzy Systems - Proceedings
Pages1264-1269
Number of pages6
DOIs
StatePublished - 2009
Event2009 IEEE International Conference on Fuzzy Systems - Jeju Island, Korea, Republic of
Duration: 20 Aug 200924 Aug 2009

Publication series

NameIEEE International Conference on Fuzzy Systems
ISSN (Print)1098-7584

Conference

Conference2009 IEEE International Conference on Fuzzy Systems
Country/TerritoryKorea, Republic of
CityJeju Island
Period20/08/0924/08/09

Keywords

  • Common P
  • H control
  • Linear matrix inequality
  • Premise-dependent lyapunov
  • Relaxation
  • Takagi-Sugeno fuzzy model

Fingerprint

Dive into the research topics of 'Relaxation analysis via line integral'. Together they form a unique fingerprint.

Cite this