Range Imaging of E-Region Field-Aligned Irregularities by Using a Multifrequency Technique: Validation and Initial Results

Jenn Shyong Chen, Yen Hsyang Chu, Ching Lun Su, Hiroyuki Hashiguchi, Ying Li

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

This paper reports the first use of a multifrequency range imaging (RIM) technique for observing E-region field-aligned irregularities (FAIs) in the midlatitude ionosphere. The Middle and Upper atmosphere Radar (MUR; 34.85°N, 136.10°E) was used to conduct experiments with five equally spaced frequencies between 46.25 and 46.75 MHz. Three types of RIM data were examined: data with 13-element binary Barker codes, with 16-element binary complementary codes, and without phase codes. Moreover, two calibration approaches were adopted to validate the applicability of the RIM technique, which functioned as intended. Excellent RIM performance such as the ability to resolve several striations in an echo region of FAIs was demonstrated. However, sidelobe echoes caused by pulse coding mechanisms were occasionally observed at altitudes above and below the source regions in the coded data. Therefore, a procedure was developed according to one of the calibration approaches to identify and remove such kind of sidelobe echoes, which was shown to be applicable for the complementary-coded data. In addition to FAIs, a thin plasma layer with a thickness of approximately 1 km was identified as being structured with some tilted finer structures, which could not be observed in the original intensity images with a range resolution of 600 m. Preliminary estimates of the Doppler velocities indicated that a wind shear effect could be the cause of such tilted finer structures.

Original languageEnglish
Article number7466809
Pages (from-to)3739-3749
Number of pages11
JournalIEEE Transactions on Geoscience and Remote Sensing
Volume54
Issue number7
DOIs
StatePublished - Jul 2016

Keywords

  • Field-aligned irregularities (FAIs)
  • ionosphere
  • range imaging (RIM)
  • very high frequency (VHF) atmospheric radar

Fingerprint

Dive into the research topics of 'Range Imaging of E-Region Field-Aligned Irregularities by Using a Multifrequency Technique: Validation and Initial Results'. Together they form a unique fingerprint.

Cite this