TY - JOUR

T1 - Quasilocal energy-momentum for geometric gravity theories

AU - Chen, Chiang Mei

AU - Nester, James M.

AU - Tung, Roh Suan

N1 - Funding Information:
We would like to thank V.V. Zhytnikov for his helpful discussions.T his work was supportedb y the National Science Council of the Republic of China under contractsN SC 83-0208-M-008-014,8 4-2112-M-008-004.

PY - 1995/7/10

Y1 - 1995/7/10

N2 - From a covariant Hamiltonian formulation, using symplectic ideas, we obtain covariant quasilocal energy-momentum boundary expressions for general gravity theories. The expressions depend on which variables are fixed on the boundary, on a reference configuration and a displacement vector field. We consider applications to Einstein's theory, black hole thermodynamics and alternate spinor expressions.

AB - From a covariant Hamiltonian formulation, using symplectic ideas, we obtain covariant quasilocal energy-momentum boundary expressions for general gravity theories. The expressions depend on which variables are fixed on the boundary, on a reference configuration and a displacement vector field. We consider applications to Einstein's theory, black hole thermodynamics and alternate spinor expressions.

UR - http://www.scopus.com/inward/record.url?scp=0002758693&partnerID=8YFLogxK

U2 - 10.1016/0375-9601(95)92844-T

DO - 10.1016/0375-9601(95)92844-T

M3 - 期刊論文

AN - SCOPUS:0002758693

VL - 203

SP - 5

EP - 11

JO - Physics Letters, Section A: General, Atomic and Solid State Physics

JF - Physics Letters, Section A: General, Atomic and Solid State Physics

SN - 0375-9601

IS - 1

ER -