Predicting the Risk of Future Multiple Suicide Attempt among First-Time Suicide Attempters: Implications for Suicide Prevention Policy

I. Li Lin, Jean Yu Chen Tseng, Hui Ting Tung, Ya Han Hu, Zi Hung You

Research output: Contribution to journalArticlepeer-review

Abstract

Suicide is listed in the top ten causes of death in Taiwan. Previous studies have pointed out that psychiatric patients having suicide attempts in their history are more likely to attempt suicide again than non-psychiatric patients. Therefore, how to predict the future multiple suicide attempts of psychiatric patients is an important issue of public health. Different from previous studies, we collect the psychiatric patients who have a suicide diagnosis in the National Health Insurance Research Database (NHIRD) as the study cohort. Study variables include psychiatric patients’ characteristics, medical behavior characteristics, physician characteristics, and hospital characteristics. Three machine learning techniques, including decision tree (DT), support vector machine (SVM), and artificial neural network (ANN), are used to develop models for predicting the risk of future multiple suicide attempts. The Adaboost technique is further used to improve prediction performance in model development. The experimental results show that Adaboost+DT performs the best in predicting the behavior of multiple suicide attempts among psychiatric patients. The findings of this study can help clinical staffs to early identify high-risk patients and improve the effectiveness of suicide prevention.

Original languageEnglish
Article number667
JournalHealthcare (Switzerland)
Volume10
Issue number4
DOIs
StatePublished - Apr 2022

Keywords

  • artificial neural network
  • decision tree
  • multiple suicide attempt
  • supervised learning

Fingerprint

Dive into the research topics of 'Predicting the Risk of Future Multiple Suicide Attempt among First-Time Suicide Attempters: Implications for Suicide Prevention Policy'. Together they form a unique fingerprint.

Cite this