Potential sources, scavenging processes, and source regions of mercury in the wet deposition of South Korea

Sangwoo Eom, Haebum Lee, Jihee Kim, Kihong Park, Younghee Kim, Guey Rong Sheu, David A. Gay, David Schmeltz, Seunghee Han

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

In this study, the potential sources, scavenging processes, and emission regions for Hg in wet deposition were investigated in rural (Jeju), suburban (Gwangju), and urban sites (Incheon and Seoul) of South Korea. The annual volume-weighted mean concentrations of Hg in wet deposition were four to five times higher in Incheon (16.6 ng L−1) and Seoul (22.5 ng L−1) than in Jeju (4.0 ng L−1) and Gwangju (4.1 ng L−1). The variations in the Hg concentrations in wet deposition of Jeju and Gwangju were related to Cl, Na+, Mg2+, and K+ originating from marine and crustal sources, and those in Incheon and Seoul were related to SO42−, NO3, and NH4+ emitted from anthropogenic sources. The below-cloud scavenging was considered a major inclusion process of Hg in Jeju and Gwangju, while the within-cloud scavenging was suggested in Incheon and Seoul, based on the results of correlation analysis with Hg and major ions in wet deposition, and meteorological data. The cluster analysis of backward trajectories demonstrated that the Hg concentration in wet deposition was highest in the cluster transported from Hebei and Shandong of China in Gwangju, but in Seoul, the Hg concentrations of each cluster were comparable. This suggests that regional transport is the major source of Hg in the wet deposition of Gwangju while local transport provides substantial amount of Hg in the wet deposition of Seoul. This was further supported by the results of concentration-weighted trajectories: the most probable source region was east China for Gwangju, and the mid-west of South Korea and east China for Seoul. It is noted that the peak methylmercury concentrations were found every spring with simultaneous increases in atmospheric Al, Ca, Mg, and Fe concentrations, indicating a concurrence with Asian dust. The formation process of methylmercury in Asian dust should be confirmed in future studies.

Original languageEnglish
Article number143934
JournalScience of the Total Environment
Volume762
DOIs
StatePublished - 25 Mar 2021

Keywords

  • Asian dust
  • Backward trajectory model
  • Mercury
  • Methylmercury
  • Source
  • Wet deposition

Fingerprint

Dive into the research topics of 'Potential sources, scavenging processes, and source regions of mercury in the wet deposition of South Korea'. Together they form a unique fingerprint.

Cite this