Positive-bias-temperature-instability Induced Random-trap-fluctuation Enhanced Physical Unclonable Functions on 14-nm nFinFETs

E. R. Hsieh, Z. Y. Wang, Y. H. Ye, Y. S. Wu, C. F. Huang, P. S. Huang, Y. S. Huang, M. L. Miu, H. S. Su, S. Y. Huang, S. M. Lu

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

We report one sort of weak physical unclonable functions (PUFs) composed of 14-nm nFinFETs with entropy of the random-trap-fluctuation (RTF). After the positive-bias-temperature-instability (PBTI) stress at high temperatures (85 °C ~ 150 °C), the generation of abundant random traps at the interface of gate-dielectric layers and channel efficiently improves cryptographic parameters of nFinFET-PUFs. Results show that bit-error-rates of the MOSAIC plots reduce to 1.4%; average values/standarddeviation of the inter-and intra-Hamming-distance reach 50.28%/1.7% and 0.38%/0.42%, respectively. This work provides an implacable technique to boost characteristics of weak PUFs through combinations of device-reliability and cryptography.

Original languageEnglish
Pages (from-to)1
Number of pages1
JournalIEEE Electron Device Letters
DOIs
StatePublished - 1 Sep 2022

Keywords

  • FinFETs
  • Logic gates
  • Nonvolatile memory
  • Physical Unclonable Function
  • Physical unclonable function
  • Positive-biastemperature-instability
  • Random Trap Fluctuation
  • Silicon
  • Standards
  • Stress

Fingerprint

Dive into the research topics of 'Positive-bias-temperature-instability Induced Random-trap-fluctuation Enhanced Physical Unclonable Functions on 14-nm nFinFETs'. Together they form a unique fingerprint.

Cite this