TY - JOUR
T1 - Performance evaluation of a multi-stage plate-type membrane humidifier for proton exchange membrane fuel cell
AU - Yan, Wei Mon
AU - Chen, Chen Yu
AU - Jhang, You kai
AU - Chang, Yu Hsuan
AU - Amani, Pouria
AU - Amani, Mohammad
N1 - Publisher Copyright:
© 2018
PY - 2018/11/15
Y1 - 2018/11/15
N2 - The influence of channel dimension and altering dry air inlet conditions such as temperature and humidity on the humidification efficiency of a multi-stage plate-type membrane humidifier for kW-scale proton exchange membrane fuel cells is analyzed in terms of the dew point approach temperature, water recovery ratio, pressure loss, and the coefficient of performance. Investigating the effect of channel dimension reveals that the width and depth of the channel significantly affect the humidification performance. The results show that the increase of dry air inlet temperature and humidity leads to improving the dew point approach temperature, decreasing the water recovery ratio, slight increasing the pressure drop, and consequently decreasing the coefficient of performance. The minimum dew point approach temperature and maximum water recovery ratio occur at the flow rate of 30 L/min. The highest water recovery ratio, 73%, is achieved at the temperature of 50 °C and relative humidity of 40%. Moreover, the pressure loss increases with the increment of air flow rate and the coefficient of performance declines with the increase of air flow rate. Thus, it is recommended to select the minimum possible flow rate, dry air inlet temperature, and relative humidity as the efficient operating condition.
AB - The influence of channel dimension and altering dry air inlet conditions such as temperature and humidity on the humidification efficiency of a multi-stage plate-type membrane humidifier for kW-scale proton exchange membrane fuel cells is analyzed in terms of the dew point approach temperature, water recovery ratio, pressure loss, and the coefficient of performance. Investigating the effect of channel dimension reveals that the width and depth of the channel significantly affect the humidification performance. The results show that the increase of dry air inlet temperature and humidity leads to improving the dew point approach temperature, decreasing the water recovery ratio, slight increasing the pressure drop, and consequently decreasing the coefficient of performance. The minimum dew point approach temperature and maximum water recovery ratio occur at the flow rate of 30 L/min. The highest water recovery ratio, 73%, is achieved at the temperature of 50 °C and relative humidity of 40%. Moreover, the pressure loss increases with the increment of air flow rate and the coefficient of performance declines with the increase of air flow rate. Thus, it is recommended to select the minimum possible flow rate, dry air inlet temperature, and relative humidity as the efficient operating condition.
KW - Coefficient of performance
KW - Flow channel dimension
KW - Humidification performance
KW - Multi-stage plate-type membrane humidifier
KW - Proton exchange membrane fuel cell
UR - http://www.scopus.com/inward/record.url?scp=85053195060&partnerID=8YFLogxK
U2 - 10.1016/j.enconman.2018.09.027
DO - 10.1016/j.enconman.2018.09.027
M3 - 期刊論文
AN - SCOPUS:85053195060
SN - 0196-8904
VL - 176
SP - 123
EP - 130
JO - Energy Conversion and Management
JF - Energy Conversion and Management
ER -