Partition between collision and subduction accretionary prisms along an inherited transcurrent fault zone: New insights on the Taiwan fold and thrust belt

Stéphane Brusset, Pierre Souquet, Joachim Déramond, Jean Claude Sibuet, Shu Kun Hsu, Benoît Deffontaines, Hao Tsu Chu

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

A new geotectonic framework of the Taiwan orogen is presented in accordance with the hypothesis of an oblique arc-arc collision. The colliding Luzon arc is physically connected to the eastern Coastal Range in which a subduction complex remnant is preserved and backthrust with intra-arc sediments in a small retroforeland basin. A southern and extinct extension of the Ryukyu arc is characterized in western Taiwan. It displays a duplex structure (Tananao and Backbone horses and Lishan triangle zone) between a buried floor thrust located in the arc crust and a roof thrust developed in the arc cover (Hsuehshan Range and South Backbone Range). Westward the basal thrust climbs in the sedimentary series of the western proforeland (Foothills and Hengchun Peninsula) and dies out in a buried tip line. The northern part of the orogen, including all the Tananao arc core, is shown as an intra-oceanic-continental arc-arc collision belt characterized by an unroofed duplex culmination above a leading floor thrust and both proforeland and retroforeland basins. The southern part, which displays a roof thrust sequence above a buried duplex, is shown as an accretionary prism built in a transition zone between continent and oceanic subduction (transition from the Asian continental crust, including the former Ryukyu arc, to the oceanic Old Philippine Sea crust). The partition is believed to be induced by a deep intracontinental transcurrent fault zone able to influence the difference in shortening, duplex pattern, and leading thrust depth. The evolution was controlled by the Ryukyu subduction (backarc extension, arc magmatism extinction, and cooling and intra-arc collapse) until the early middle Miocene (around 15 Ma) and then it was controlled by the Luzon arc progression (continental subduction, collision, indentation, and hinterland uplift and frontal thrust propagation).

Original languageEnglish
Pages (from-to)546-558
Number of pages13
JournalTectonics
Volume18
Issue number3
DOIs
StatePublished - Jun 1999

Fingerprint

Dive into the research topics of 'Partition between collision and subduction accretionary prisms along an inherited transcurrent fault zone: New insights on the Taiwan fold and thrust belt'. Together they form a unique fingerprint.

Cite this