Abstract
We construct optimal designs for group testing experiments where the goal is to estimate the prevalence of a trait by using a test with uncertain sensitivity and specificity. Using optimal design theory for approximate designs, we show that the most efficient design for simultaneously estimating the prevalence, sensitivity and specificity requires three different group sizes with equal frequencies. However, if estimating prevalence as accurately as possible is the only focus, the optimal strategy is to have three group sizes with unequal frequencies. On the basis of a chlamydia study in the USA we compare performances of competing designs and provide insights into how the unknown sensitivity and specificity of the test affect the performance of the prevalence estimator. We demonstrate that the locally D- and Ds-optimal designs proposed have high efficiencies even when the prespecified values of the parameters are moderately misspecified.
Original language | English |
---|---|
Pages (from-to) | 1547-1563 |
Number of pages | 17 |
Journal | Journal of the Royal Statistical Society. Series B: Statistical Methodology |
Volume | 79 |
Issue number | 5 |
DOIs | |
State | Published - Nov 2017 |
Keywords
- D-optimality
- D-optimality
- Group testing
- Sensitivity
- Specificity