TY - GEN
T1 - Optical properties of ternary alloyed ZnxCd1-xSe semiconductor nanocrystals
AU - Chen, I. Han
AU - Wang, Kuan Wen
AU - Chung, Shu Ru
PY - 2011
Y1 - 2011
N2 - In this study, ternary alloyed ZnxCd1-xSe (x=0, 0.2, 0.5, 0.8 and 1) semiconductor nanocrystals with high quality are synthesized by a high temperature decomposition route. The effect of Zn content (x) of Zn xCd1-xSe semiconductor nanocrystals on their physical properties is investigated by controlling the Zn/Cd ratios. The optical properties and morphologies of the prepared nanocrystals are measured by FL, UV-Vis and TEM techniques. The actual composition of the prepared nanocrystals based on the ICP results is Zn0.03Cd0.97Se, Zn 0.12Cd0.88Se, and Zn0.38Cd0.62Se when Zn content is 0.2, 0.5, and 0.8, respectively. The fluorescence properties of the obtained alloyed ZnxCd1-xSe nanocrystals posses pure green light color and narrow particle size distribution (FWHM=28-30 nm). It is found that the emission wavelength of nanocrystals shifts from 510 to 545 nm with increasing Zn content from 0 to 0.8, although based on the TEM measurements, the particle sizes of ZnxCd1-xSe nanocrystal for different Zn content (0-0.8) are almost about 3.2 nm. Therefore, the wavelength shift and nonlinear optical property of the ZnxCd 1-xSe nanocrystals is not caused by the particle size but the compositional effect..
AB - In this study, ternary alloyed ZnxCd1-xSe (x=0, 0.2, 0.5, 0.8 and 1) semiconductor nanocrystals with high quality are synthesized by a high temperature decomposition route. The effect of Zn content (x) of Zn xCd1-xSe semiconductor nanocrystals on their physical properties is investigated by controlling the Zn/Cd ratios. The optical properties and morphologies of the prepared nanocrystals are measured by FL, UV-Vis and TEM techniques. The actual composition of the prepared nanocrystals based on the ICP results is Zn0.03Cd0.97Se, Zn 0.12Cd0.88Se, and Zn0.38Cd0.62Se when Zn content is 0.2, 0.5, and 0.8, respectively. The fluorescence properties of the obtained alloyed ZnxCd1-xSe nanocrystals posses pure green light color and narrow particle size distribution (FWHM=28-30 nm). It is found that the emission wavelength of nanocrystals shifts from 510 to 545 nm with increasing Zn content from 0 to 0.8, although based on the TEM measurements, the particle sizes of ZnxCd1-xSe nanocrystal for different Zn content (0-0.8) are almost about 3.2 nm. Therefore, the wavelength shift and nonlinear optical property of the ZnxCd 1-xSe nanocrystals is not caused by the particle size but the compositional effect..
KW - Compositional effect
KW - FL
KW - FWHM
KW - Semiconductor nanocrystal
KW - ZnCd Se nanocrystals
UR - http://www.scopus.com/inward/record.url?scp=81455133742&partnerID=8YFLogxK
M3 - 會議論文篇章
AN - SCOPUS:81455133742
SN - 9781439871423
SN - 9781439871423
T3 - Technical Proceedings of the 2011 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2011
SP - 339
EP - 342
BT - Technical Proceedings of the 2011 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2011
T2 - Nanotechnology 2011: Advanced Materials, CNTs, Particles, Films and Composites - 2011 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2011
Y2 - 13 June 2011 through 16 June 2011
ER -