On the structure of the Io torus

C. K. Goertz, W. H. Ip

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

It is now recognized that a number of neutral-plasma interaction processes are of great importance in the formation of the Io torus. One effect not yet considered in detail is the charge exchange between fast torus ions and the atmospheric neutrals producing fast neutrals energetic enough to escape from Io. Since near Io the plasma flow is reduced, the neutrals of charge exchange origin are not energetic enough to leave the Jovian system; these neutrals are therefore distributed over an extensive region as indicated by the sodium cloud. It is estimated here that the total neutral injection rate can reach 1027 s-1 if not more. New ions subsequently created in the distributed neutral atomic cloud as a result of charge exchange or electron impact ionization are picked up by the corotating magnetic field. The pick-up ions are hot with initial gyration speed near the corotation speed. The radial current driven by the pickup process cannot close in the torus but must be connected to the planetary ionosphere by field-aligned currents. These field-aligned currents will flow away from the equator at the outer edge of the neutral cloud and towards it at the inner edge. We find that the Jovian ionospheric photoelectrons alone cannot supply the current flowing away from the equator, and torus ions accelerated by a parallel electric field could be involved. The parallel potential drop is estimated to be several kV which is large enough to push the torus ions into the Jovian atmosphere. This loss could explain the sharp discontinuous change of flux tube content and ion temperature at L = 5.6 as well as the generation of auroral type hiss there. Finally we show that the inner torus should be denser at system III longitudes near 240° as a result of the enhanced secondary electron flux in this region. This effect may be related to the longitudinal brightness variation observed in the SII optical emissions.

Original languageEnglish
Pages (from-to)855-864
Number of pages10
JournalPlanetary and Space Science
Volume30
Issue number9
DOIs
StatePublished - Sep 1982

Fingerprint

Dive into the research topics of 'On the structure of the Io torus'. Together they form a unique fingerprint.

Cite this