TY - JOUR
T1 - On the best possible character of the LQ norm in some a priori estimates for non-divergence form equations in carnot groups
AU - Danielli, Donatella
AU - Garofalo, Nicola
AU - Nhieu, Duy Minh
PY - 2003/11
Y1 - 2003/11
N2 - Let G be a group of Heisenberg type with homogeneous dimension Q. For every 0 < ε < Q we construct a non-divergence form operator L ε and a non-trivial solution uε ∈ ℒ2,Q-ε (Ω) ∩ C (Ω̄) to the Dirichlet problem: Lu = 0 in Ω, u = 0 on ∂Ω. This non-uniqueness result shows the impossibility of controlling the maximum of u with an Lp norm of Lu when p < Q. Another consequence is the impossiblity of an Alexandrov-Bakelman type estimate such as supΩ u ≤ C (∫Ω | det(u,ij)| dg)1/m, where m is the dimension of the horizontal layer of the Lie algebra and (u,ij) is the symmetrized horizontal Hessian of u.
AB - Let G be a group of Heisenberg type with homogeneous dimension Q. For every 0 < ε < Q we construct a non-divergence form operator L ε and a non-trivial solution uε ∈ ℒ2,Q-ε (Ω) ∩ C (Ω̄) to the Dirichlet problem: Lu = 0 in Ω, u = 0 on ∂Ω. This non-uniqueness result shows the impossibility of controlling the maximum of u with an Lp norm of Lu when p < Q. Another consequence is the impossiblity of an Alexandrov-Bakelman type estimate such as supΩ u ≤ C (∫Ω | det(u,ij)| dg)1/m, where m is the dimension of the horizontal layer of the Lie algebra and (u,ij) is the symmetrized horizontal Hessian of u.
KW - Alexandrov-Bakelman-Pucci estimate
KW - Geometric maximum principle
KW - Horizontal Monge-Ampère equation
KW - ∞-horizontal Laplacian
UR - http://www.scopus.com/inward/record.url?scp=0142138331&partnerID=8YFLogxK
U2 - 10.1090/S0002-9939-03-07105-3
DO - 10.1090/S0002-9939-03-07105-3
M3 - 期刊論文
AN - SCOPUS:0142138331
SN - 0002-9939
VL - 131
SP - 3487
EP - 3498
JO - Proceedings of the American Mathematical Society
JF - Proceedings of the American Mathematical Society
IS - 11
ER -