Numerical simulation of the oxygen distribution in silicon melt for different argon gas flow rates during Czochralski silicon crystal growth process

Zumrotul Ida, Jyh Chen Chen, Thi Hoai Thu Nguyen

Research output: Contribution to journalConference articlepeer-review

Abstract

The effects of argon gas flow rate on the oxygen concentration in Czochralski (CZ) grown silicon crystal were examined. To analyze the influence of the argon gas flow rate in CZ growth process, a 200 mm length silicon single crystal was grown. Different argon gas flow rates are considered. The melt flow pattern, temperature and oxygen concentration distributions in the melt and crystal-melt interface are calculated. The results show that the transport of oxygen impurity is quite dependent on the flow motion in the melt. As the argon gas flow rate increases, there is no fundamental change in flow motion of the melt and the oxygen concentration decreases to a minimum value. When the argon gas flow rate increases further, the flow pattern under the melt-crystal interface starting changes and the oxygen concentration has increased after. Therefore, there is an optimum value for the argon gas flow rate for obtaining the lowest oxygen concentration in the melt.

Original languageEnglish
Article number05013
JournalMATEC Web of Conferences
Volume204
DOIs
StatePublished - 21 Sep 2018
Event2018 International Mechanical and Industrial Engineering Conference, IMIEC 2018 - Malang, Indonesia
Duration: 30 Aug 201831 Aug 2018

Fingerprint

Dive into the research topics of 'Numerical simulation of the oxygen distribution in silicon melt for different argon gas flow rates during Czochralski silicon crystal growth process'. Together they form a unique fingerprint.

Cite this