Abstract
We prove the following properties of the numerical range of a KMS matrix Jn(a): (1) W(Jn(a)) is a circular disc if and only if n = 2 and a ≠ 0, (2) its boundary ?W(Jn(a)) contains a line segment if and only if n ≥ 3 and |a| = 1, and (3) the intersection of the boundaries ?W(Jn(a)) and ∂W(Jn(a)[j]) is either the singleton {min s(Re Jn(a))} if n is odd, j = (n + 1)/2 and |a| > 1, or the empty set Ø if otherwise, where, for any n-by-n matrix A, A[j] denotes its jth principal submatrix obtained by deleting its jth row and jth column (1 ≤ j ≤ n), ReA its real part (A + A*)/2, and s(A) its spectrum.
Original language | English |
---|---|
Pages (from-to) | 583-610 |
Number of pages | 28 |
Journal | Acta Scientiarum Mathematicarum |
Volume | 79 |
Issue number | 3-4 |
State | Published - 2013 |
Keywords
- KMS matrix
- Numerical range
- S -matrix
- S-matrix