Projects per year
Abstract
This study presents a hybrid approach for simulating flow and advective transport dynam-ics in fractured rocks. The developed hybrid domain (HD) model uses the two-dimensional (2D) triangular mesh for fractures and tetrahedral mesh for the three-dimensional (3D) rock matrix in a simulation domain and allows the system of equations to be solved simultaneously. This study also illustrates the HD model with two numerical cases that focus on the flow and advective transport between the fractures and rock matrix. The quantitative assessments are conducted by comparing the HD results with those obtained from the discrete fracture network (DFN) and equivalent continuum porous medium (ECPM) models. Results show that the HD model reproduces the head solutions obtained from the ECPM model in the simulation domain and heads from the DFN model in the fractures in the first case. The particle tracking results show that the mean particle velocity in the HD model can be 7.62 times higher than that obtained from the ECPM mode. In addition, the developed HD model enables detailed calculations of the fluxes at intersections between fractures and cylinder objects in the case and obtains relatively accurate flux along the intersections. The solutions are the key factors to evaluate the sources of contaminant released from the disposal facility.
Original language | English |
---|---|
Article number | 10792 |
Journal | Applied Sciences (Switzerland) |
Volume | 11 |
Issue number | 22 |
DOIs | |
State | Published - Nov 2021 |
Keywords
- Advective transport
- Fractured rock
- Hybrid domain
- Particle tracking
Fingerprint
Dive into the research topics of 'Numerical assessment of the hybrid approach for simulating three-dimensional flow and advective transport in fractured rocks'. Together they form a unique fingerprint.Projects
- 3 Finished
-
桃園台地都會與海岸帶關鍵區之時空特徵跨域鏈結研究-桃園台地都會與海岸帶關鍵區之時空特徵跨域鏈結研究(總計畫)
Ni, C.-F. (PI)
1/08/21 → 31/10/22
Project: Research
-
Trans-Disciplinary Research on Characterizing Spatio-Temporal Variations of Critical Zones in Taoyuan Tableland and Coastal Areas
Ni, C.-F. (PI)
1/08/20 → 31/07/21
Project: Research
-
Geological Uncertainty and Societal Risk: the Perspectives of Engineering, Environment, and Geohazards( I )(2/2)
Juang, C.-H. (PI)
1/08/20 → 31/07/22
Project: Research