Abstract
Methamphetamine use disorder (MUD) is a brain disease that leads to altered regional neuronal activity. Virtual reality (VR) is used to induce the drug cue reactivity. Previous studies reported significant frequency-specific neuronal abnormalities in patients with MUD during VR induction of drug craving. However, whether those patients exhibit neuronal abnormalities after VR induction that could serve as the treatment target remains unclear. Here, we used an integrated VR system for inducing drug related changes and investigated the neuronal abnormalities after VR exposure in patients. Fifteen patients with MUD and ten healthy subjects were recruited and exposed to drug-related VR environments. Resting-state EEG were recorded for 5 minutes twice-before and after VR and transformed to obtain the frequency-specific data. Three self-reported scales for measurement of the anxiety levels and impulsivity of participants were obtained after VR task. Statistical tests and machine learning methods were employed to reveal the differences between patients and healthy subjects. The result showed that patients with MUD and healthy subjects significantly differed in Θ, α, and γ power changes after VR. These neuronal abnormalities in patients were associated with the self-reported behavioral scales, indicating impaired impulse control. Our findings of resting-state EEG abnormalities in patients with MUD after VR exposure have the translational value and can be used to develop the treatment strategies for methamphetamine use disorder.
Original language | English |
---|---|
Pages (from-to) | 3458-3465 |
Number of pages | 8 |
Journal | IEEE Journal of Biomedical and Health Informatics |
Volume | 26 |
Issue number | 7 |
DOIs | |
State | Published - 1 Jul 2022 |
Keywords
- EEG
- methamp-hetamine use disorder (MUD)
- neuronal abnormalities
- resting-state
- virtual reality (VR)