@inproceedings{0d25f7f8a4c44dc99a08b1f99059772b,
title = "Multivariate Beta Mixture Model: Probabilistic Clustering with Flexible Cluster Shapes",
abstract = "This paper introduces the multivariate beta mixture model (MBMM), a new probabilistic model for soft clustering. MBMM adapts to diverse cluster shapes because of the flexible probability density function of the multivariate beta distribution. We introduce the properties of MBMM, describe the parameter learning procedure, and present the experimental results, showing that MBMM fits diverse cluster shapes on synthetic and real datasets. The code is released anonymously at https://github.com/hhchen1105/mbmm/.",
keywords = "Clustering, EM algorithm, Mixture model",
author = "Hsu, {Yung Peng} and Chen, {Hung Hsuan}",
note = "Publisher Copyright: {\textcopyright} The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.; 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024 ; Conference date: 07-05-2024 Through 10-05-2024",
year = "2024",
doi = "10.1007/978-981-97-2242-6_19",
language = "???core.languages.en_GB???",
isbn = "9789819722419",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "233--245",
editor = "De-Nian Yang and Xing Xie and Tseng, {Vincent S.} and Jian Pei and Jen-Wei Huang and Lin, {Jerry Chun-Wei}",
booktitle = "Advances in Knowledge Discovery and Data Mining - 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Proceedings",
}