Projects per year
Abstract
High-resolution numerical simulations are regularly used for severe weather forecasts. To improve model initial conditions, a single short localization is commonly applied in the ensemble Kalman filter when assimilating observations. This approach prevents large-scale corrections from appearing in a high-resolution analysis. To improve heavy rainfall forecasts associated with a multiscale weather system, analyses must be accurate across a range of spatial scales, a task that is difficult to accomplish using a single localization. This study is the first to apply a dual-localization (DL) method to improve high-resolution analyses used to forecast a real-case heavy rainfall event associated with a Meiyu front on 16 June 2008 in Taiwan. A Meiyu front is a multiscale weather system characterized by storm-scale convection, a mesoscale front, and large-scale southwesterly monsoonal flow. The use of the DL method to produce the analyses was able to correct both the synoptic-scale moisture flux transported by southwesterly monsoonal flow and the mesoscale low-level convergence offshore of southwestern Taiwan. As a result, the forecasted amount, pattern, and temporal evolution of the heavy rainfall event were improved.
Original language | English |
---|---|
Pages (from-to) | 1684-1702 |
Number of pages | 19 |
Journal | Journal of Advances in Modeling Earth Systems |
Volume | 9 |
Issue number | 3 |
DOIs | |
State | Published - Jul 2017 |
Keywords
- EnKF
- dual-localization data assimilation
- heavy rainfall prediction
Fingerprint
Dive into the research topics of 'Multilocalization data assimilation for predicting heavy precipitation associated with a multiscale weather system'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Changes of Precipitation Patterns (Frequency and Intensity) in Monsoon Asia Associated with Global Warming(2/2)
Yu, J.-Y. (PI)
1/08/16 → 30/09/17
Project: Research