Multi-decadal mangrove forest change detection and prediction in honduras, central america, with landsat imagery and a markov chain model

Chi Farn Chen, Nguyen Thanh Son, Ni Bin Chang, Cheng Ru Chen, Li Yu Chang, Miguel Valdez, Gustavo Centeno, Carlos Alberto Thompson, Jorge Luis Aceituno

Research output: Contribution to journalArticlepeer-review

103 Scopus citations


Mangrove forests play an important role in providing ecological and socioeconomic services for human society. Coastal development, which converts mangrove forests to other land uses, has often ignored the services that mangrove may provide, leading to irreversible environmental degradation. Monitoring the spatiotemporal distribution of mangrove forests is thus critical for natural resources management of mangrove ecosystems. This study investigates spatiotemporal changes in Honduran mangrove forests using Landsat imagery during the periods 1985-1996, 1996-2002, and 2002-2013. The future trend of mangrove forest changes was projected by a Markov chain model to support decision-making for coastal management. The remote sensing data were processed through three main steps: (1) data pre-processing to correct geometric errors between the Landsat imageries and to perform reflectance normalization; (2) image classification with the unsupervised Otsu's method and change detection; and (3) mangrove change projection using a Markov chain model. Validation of the unsupervised Otsu's method was made by comparing the classification results with the ground reference data in 2002, which yielded satisfactory agreement with an overall accuracy of 91.1% and Kappa coefficient of 0.82. When examining mangrove changes from 1985 to 2013, approximately 11.9% of the mangrove forests were transformed to other land uses, especially shrimp farming, while little effort (3.9%) was applied for mangrove rehabilitation during this 28-year period. Changes in the extent of mangrove forests were further projected until 2020, indicating that the area of mangrove forests could be continuously reduced by 1,200 ha from 2013 (approximately 36,700 ha) to 2020 (approximately 35,500 ha). Institutional interventions should be taken for sustainable management of mangrove ecosystems in this coastal region.

Original languageEnglish
Pages (from-to)6408-6426
Number of pages19
JournalRemote Sensing
Issue number12
StatePublished - Dec 2013


  • Change detection
  • Change projection
  • Image classification
  • Landsat
  • Mangrove forests


Dive into the research topics of 'Multi-decadal mangrove forest change detection and prediction in honduras, central america, with landsat imagery and a markov chain model'. Together they form a unique fingerprint.

Cite this