Abstract
We define new Hamiltonian isotopy invariants for a 2-dimensional monotone Lagrangian torus embedded in a symplectic 4-manifold. We show that, in the standard symplectic ℝ4, these invariants distinguish a monotone Clifford torus from a Chekanov torus.
Original language | English |
---|---|
Pages (from-to) | 531-541 |
Number of pages | 11 |
Journal | Mathematical Research Letters |
Volume | 16 |
Issue number | 3 |
DOIs | |
State | Published - May 2009 |
Keywords
- Hamiltonian monodromy group
- Infinite dihedral group
- Involutions
- Maslov class
- Monotone lagrangian torus