Molecular dynamics simulation of cation-phospholipid clustering in phospholipid bilayers: Possible role in stalk formation during membrane fusion

Hui Hsu Gavin Tsai, Wei Xiang Lai, Hong Da Lin, Jian Bin Lee, Wei Fu Juang, Wen Hsin Tseng

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

In this study, we performed all-atom long-timescale molecular dynamics simulations of phospholipid bilayers incorporating three different proportions of negatively charged lipids in the presence of K +, Mg 2 +, and Ca 2 + ions to systemically determine how membrane properties are affected by cations and lipid compositions. Our simulations revealed that the binding affinity of Ca 2 + ions with lipids is significantly stronger than that of K + and Mg 2 + ions, regardless of the composition of the lipid bilayer. The binding of Ca 2 + ions to the lipids resulted in bilayers having smaller lateral areas, greater thicknesses, greater order, and slower rotation of their lipid head groups, relative to those of corresponding K +- and Mg 2 +-containing systems. The Ca 2 + ions bind preferentially to the phosphate groups of the lipids. The complexes formed between the cations and the lipids further assembled to form various multiple-cation-centered clusters in the presence of anionic lipids and at higher ionic strength-most notably for Ca 2 +. The formation of cation-lipid complexes and clusters dehydrated and neutralized the anionic lipids, creating a more-hydrophobic environment suitable for membrane aggregation. We propose that the formation of Ca 2 +-phospholipid clusters across apposed lipid bilayers can work as a "cation glue" to adhere apposed membranes together, providing an adequate configuration for stalk formation during membrane fusion.

Original languageEnglish
Pages (from-to)2742-2755
Number of pages14
JournalBiochimica et Biophysica Acta - Biomembranes
Volume1818
Issue number11
DOIs
StatePublished - Nov 2012

Keywords

  • Cation effect
  • Cation-phospholipid clustering
  • Lipid bilayers property
  • Membrane fusion
  • Microdomain formation
  • Molecular dynamics simulation

Fingerprint

Dive into the research topics of 'Molecular dynamics simulation of cation-phospholipid clustering in phospholipid bilayers: Possible role in stalk formation during membrane fusion'. Together they form a unique fingerprint.

Cite this