Projects per year
Abstract
The 2018 February 6 Mw 6.3 Hualien earthquake caused severe localized damage in Hualien City, located 20 km away from the epicentre. The damage was due to strong (>70 cm s-1) and sharp (duration ∼2.5 s) velocity pulses. The observed peak ground-motion velocity in Hualien City symmetrically decays with distance from the nearby Milun fault. Waveforms observed on the opposite sides of the fault show reversed polarity on the vertical and N-S components while the E-W component is almost identical. None of the published finite-fault slip models can explain the spatially highly localized large velocity pulses. In this study, we show that an Mw 5.9 strike-slip subevent on the Milun fault at 2.5 km depth, rupturing from north to south at ∼0.9Vs speed, combined with site effects caused by surficial layers with low S-wave speed, can explain the velocity pulses observed at the dense strong-motion network stations. This subevent contributes only 25 per cent of the total moment of the 2018 Hualien earthquake, suggesting that a small local slip patch near a metropolis can dominate the local hazard. Our result strongly suggests that seismic hazard assessments should consider large ground-motion variabilities caused by directivity and site effects, as observed in the 2018 Hualien earthquake.
Original language | English |
---|---|
Pages (from-to) | 348-365 |
Number of pages | 18 |
Journal | Geophysical Journal International |
Volume | 223 |
Issue number | 1 |
DOIs | |
State | Published - 1 Oct 2020 |
Keywords
- Earthquake ground motions
- Earthquake source observations
- Site effects
Fingerprint
Dive into the research topics of 'Modelling of pulse-like velocity ground motion during the 2018 Mw6.3 Hualien earthquake, Taiwan'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Uncovering Source Properties of Realistically Complex Microearthquakes: Links between Dynamic Models and Observations(2/2)
Lin, Y.-Y. (PI)
1/08/20 → 31/07/21
Project: Research