Modeling and Optimization of a Plastic Thermoforming Process

Chyan Yang, Shiu Wan Hung

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Thermoforming of plastic sheets has become an important process in industry because of their low cost and good formability. However there are some unsolved problems that confound the overall success of this technique. Nonuniform thickness distribution caused by inappropriate processing condition is one of them. In this study, results of experimentation were used to develop a process model for thermoforming process via a supervised learning back propagation neural network. An "inverse" neural network model was proposed to predict the optimum processing conditions. The network inputs included the thickness distribution at different positions of molded parts. The output of the processing parameters was obtained by neural computing. Good agreement was reached between the computed result by neural network and the experimental data. Optimum processing parameters can thus be obtained by using the neural network scheme we proposed. This provides significant advantages in terms of improved product quality.

Original languageEnglish
Pages (from-to)109-121
Number of pages13
JournalJournal of Reinforced Plastics and Composites
Volume23
Issue number1
DOIs
StatePublished - 2004

Keywords

  • Inverse back propagation neural network
  • Modeling and optimization
  • Processing parameter
  • Thermoforming

Fingerprint

Dive into the research topics of 'Modeling and Optimization of a Plastic Thermoforming Process'. Together they form a unique fingerprint.

Cite this