Melting and Possible Amorphization of Sn and Pb in Ge/Sn and Ge/Pb Mechanically Milled Powders

J. S.C. Jang, C. C. Koch

Research output: Contribution to journalArticlepeer-review

39 Scopus citations

Abstract

Mixtures of Ge-Sn and Ge-Pb powders were ball-milled to form a fine dispersion. After 32 h of milling the average diameter of the hard Ge particles embedded in the Sn (or Pb) matrix was about 10 nm. As the Ge concentration was increased in each system, the melting point, TM, and the enthalpy of fusion, ΔHM, of Sn (or Pb) decreased. Only small changes in ΔTM and ΔHM were observed after heating cycles in the DSC to above the melting point. The melting endotherm measured by DSC disappeared for Ge-rich compositions (88 and 95 vol. % Ge for Ge-Sn; 93.5 vol. % Ge for Ge-Pb). It is suggested that atomic disorder/melting is nucleated at the Ge/Sn (or Ge/Pb) interfaces and the melting point and enthalpy of fusion decrease as the interfacial area increases. When the Ge volume reaches a value where essentially all the Sn (or Pb) atoms are adjacent to the Ge particle surfaces, the Sn is in a disordered—perhaps amorphous—state such that no melting transition is observed.

Original languageEnglish
Pages (from-to)325-333
Number of pages9
JournalJournal of Materials Research
Volume5
Issue number2
DOIs
StatePublished - Feb 1990

Fingerprint

Dive into the research topics of 'Melting and Possible Amorphization of Sn and Pb in Ge/Sn and Ge/Pb Mechanically Milled Powders'. Together they form a unique fingerprint.

Cite this