Maximal Functions, Littlewood-Paley Theory, Riesz Transforms and Atomic Decomposition in the Multi-Parameter Flag Setting

Yongsheng Han, Ming Yi Lee, Ji Li, Brett D. Wick

Research output: Contribution to journalArticlepeer-review

Abstract

In this paper, we develop via real variable methods various characterisations of the Hardy spaces in the multi-parameter flag setting. These characterisations include those via, the non-tangential and radial maximal function, the Littlewood-Paley square function and area integral, Riesz transforms and the atomic decomposition in the multi-parameter flag setting. The novel ingredients in this paper include (1) establishing appropriate discrete Calderón reproducing formulae in the flag setting and a version of the Plancherel-Pólya inequalities for flag quadratic forms; (2) introducing the maximal function and area function via flag Poisson kernels and flag version of harmonic functions; (3) developing an atomic decomposition via the finite speed propagation and area function in terms of flag heat semigroups. As a consequence of these real variable methods, we obtain the full characterisations of the multi-parameter Hardy space with the flag structure.

Original languageEnglish
Pages (from-to)1-117
Number of pages117
JournalMemoirs of the American Mathematical Society
Volume279
Issue number1373
DOIs
StatePublished - Sep 2022

Keywords

  • Littlewood-Paley square function
  • Lusin area integral
  • atomic decomposition
  • flag Hardy space
  • flag Riesz transforms
  • maximal function

Fingerprint

Dive into the research topics of 'Maximal Functions, Littlewood-Paley Theory, Riesz Transforms and Atomic Decomposition in the Multi-Parameter Flag Setting'. Together they form a unique fingerprint.

Cite this